

.15926 Editor

Version 1.4

Volume 1

Getting Started

Welcome to the .15926 Editor. This free software is distributed by TechInvestLab.ru “as is” without
any warranties or obligations, for testing purposes. Use it and enjoy at your own risk. Please send

bug reports, usage and licensing questions or suggestions to dot15926@gmail.com .

February 23, 2013

mailto:dot15926@gmail.com

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 2

Volume 1. Getting Started

Contents

License ...4
1. Introduction ...5
2. Installing and running the program ..6
3. Glossary ..7
4. User interface ..9

4.1. Interface overview ...9
4.2. Keyboard shortcut list .. 10
4.3. Main menu .. 11

File .. 11
Project….. 11
Edit .. 14
Search ... 15
View .. 15
Data types ... 16
Import .. 17
Help... 17

4.4. Toolbar ... 18
4.5. Project panel ... 18
4.6. Project properties .. 20
4.7. Data panels... 22
4.8. Properties panel .. 23
4.9. Console .. 23

4.9.1. REPL Environment ... 23
4.9.2. Console interface .. 24
4.9.3. Console scripting .. 25
4.9.4. Example scripts .. 25

4.10. Status bar ... 27
4.11. Data view .. 27

4.11.1. Filter/Search box... 27
Search in names .. 28
Search in URIs ... 29

4.11.2. Data tree .. 29
4.11.3. Data tree overview .. 30

XML Schema type .. 30
Part 2 type ... 30
Reference and project data source .. 31
Data entity .. 34
Property of a data entity .. 37
Template definition entity .. 37
Template role ... 38
Grouping node ... 38

4.12. Diff view .. 39
4.12.1. Comparing data sources ... 39
4.12.2. Diff panel tools .. 40
4.12.3. Reviewing changes ... 40
4.12.4. Accepting changes.. 41
4.12.5. Filtering diff view ... 41
4.12.6. Saving the diff ... 42
4.12.7. Applying the diff .. 42

5. Data editing ... 44
5.1. URI and UUID generation .. 44
5.2. New template .. 45
5.3. New specialized template .. 45
5.4. New template role ... 45

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 3

5.5. Role editing ... 46
5.6. New data entity ... 47
5.7. Filling the object property (role) .. 48
5.8. Adding literal or annotation property ... 49
5.9. Cut, copy and paste data ... 50

5.9.1. Data selection... 50
5.9.2. Data copying .. 50
5.9.3. Data pasting ... 51

6. Data verification ... 52
6.1. Mandatory and optional roles verification .. 52
6.2. Typing and classification verification .. 53
6.3. Role value verification ... 53

7. Walkthrough guides ... 54
7.1. Part 4.. 54
7.2. PCA RDL .. 54
7.3. Looking for unrecognized entities ... 55
7.4. Exploring endpoints ... 56
7.5. Organizing a project .. 57

Other documentation volumes:

Volume 2. APIs: Scanner and Builder
Volume 3. Extensions

Volume 4. Patterns and Mapping

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 4

License

Parts of .15926 Editor (built-in extensions and extension samples) are released as a source code
under the BSD 2-Clause license.

Copyright 2012 TechInvestLab.ru dot15926@gmail.com

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions

and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Other parts of the software (released in binary and in text form) are not covered by the

license above and are distributed "as is" and free of charge for evaluation purposes only!

Elephant icon by Martin Berube is used for .15926 software according to terms at

http://www.iconarchive.com/show/animal-icons-by-martin-berube/elephant-icon.html

mailto:dot15926@gmail.com
http://www.iconarchive.com/show/animal-icons-by-martin-berube/elephant-icon.html

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 5

1. Introduction

Welcome to the version 1.4 of .15926 Editor (pronounced “dot 15926”). This software application

is built on the .15926 Platform to demonstrate Platform's capabilities.

.15926 Platform is a name for an architecture and a set of specific interfaces and libraries to work
with ISO 15926 data. It is developed by TechInvestLab.ru to facilitate creation of semantic
applications to work with ISO 15926 data in all possible ways – read, visualize, explore, search,

reason, map, write, exchange, etc.

All efforts are taken for .15926 Platform to be fully compatible with iRING architecture and achieve
compliance to JORD requirements. Please refer to the separate .15926 Platform Compliance

Report for more details.

In .15926 Editor you can:

 Browse ISO 15926 upper ontology in three different namespaces: PCA, RDS/WIP or ISO.

 Search and navigate public ISO 15926 SPARQL endpoints,
… or any other SPARQL endpoint you like, with authorization if required,

… including search for legacy RDS/WIP identifiers.

 Search, navigate and edit reference data files distributed publicly, including ISO 15926-4,

PCA RDL and ISO 15926-8 templates,
... or any other RDF files you like.

 Build complex data project from local files and endpoints, bringing reference data, template

definitions and project data together for integrated navigation and verification, customizing
namespaces, properties and meta-data attributes.

 Design and run intricate semantic queries or whole data mining and verification algorithms

for ISO 15926 data or any other RDF data,
… using the power of Python general purpose programming language through full-

featured REPL environment,
… and accessing APIs of various .15926 Platform components to read, analyze and
change reference and project data.

 Create from scratch your own reference classes and templates, create project data
(including template instances) manually or through your own adaptors,

… in forms ready for file exchange or upload to triple store,
… generating URI in your namespaces using UUID compliant with RFC 4122 / ITU-T
X.667 / ISO/IEC 9834-8.

 Compare data sources, build diff files, review changes and create versioning system for
reference and project data, or for any ontology.

 Define data patterns, search for patterns in your data, and visualize search results, map
spreadsheets to patterns.

 Extend .15926 Editor functionality (develop your own mapping adapters for example) using

Python, any external Python libraries and APIs of .15926 Platform components,
… testing and debugging them in the .15926 Editor environment,

… registering them as .15926 Editor extensions,
… and distributing them as open-source if you like.

 Use or modify open-source extensions from TechInvestLab.ru:

o conversion of reference and project data from TabLan.15926 data descript ion tables
(.xlsx) to ISO 15926 RDF;

o import of reference data from JSON files created by engineering catalog application
(third party);

o creation or import of template definitions in iRING spreadsheet format.

 Explore (with somewhat limited capabilities) any large RDF datasets,
… OpenCYC knowledge base, for example.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 6

.15926 Editor is a tool designed with three major goals in mind:

 explore existing sources of reference data in as many formats as possible;

 verify reference data;

 engineer and manage new reference data, including automated reference data creation

through adaptors incorporating mapping from external sources.

The Editor is intended to become for ISO 15926 data what Protégé became for OWL data – a
primary tool for data exploration.

The Editor is not designed to support any particular reference data management or data

integration workflow. Specific applications for this can be built on .15926 Platform tailored to the
requirements of organizations exchanging data – namespaces, endpoints, properties, databases,
transport layers, etc. Mapping components are integrated in .15926 Platform environment as

extensions using external or internal pattern mapping descriptions and directly accessing APIs of
source/target databases.

Please contact TechInvestLab.ru at dot15926@gmail.com for further detail on licensing and

adaptation of this software.

2. Installing and running the program

Released version works in MS Windows (XP, Vista, 7) only, no other OS versions available.

Download page: http://techinvestlab.ru/dot15926Editor

You can select MS Windows installer or archived version. Download the distribution to your hard
drive and follow instructions for installation.

You can also separately download archive with sample data from
http://techinvestlab.ru/DataSamples/

In this documentation we'll refer to the folder with software executable as <installation_folder>,

and to the sample data folder as <samples>.

To run the Editor please run dot15926.exe from <installation_folder> or use icons created.

To avoid loss of your data please don't change sample data files and extensions
distributed with the software, or backup them before update and uninstall .

Avoid putting the program or data on virtual drives, external flash drives or network drives, as
system may have restrictions to access them. Always test software ability to access folders you
have selected for your data.

You can check for updates from the Editor through Help-Check for a new version menu command.

The Editor tries to access http://techinvestlab.ru and check whether newer version is available. If
newer version is found – opening of download page in Internet browser is suggested.

mailto:dot15926@gmail.com
http://techinvestlab.ru/dot15926Editor
http://techinvestlab.ru/DataSamples/
http://techinvestlab.ru/

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 7

3. Glossary

.15926 project (project) – several data sources opened simultaneously in the .15926

Editor, with coherent set of properties (module names, namespaces, object and data
properties) defined for each data source.

Active data panel – the data panel in focus, click on its tab or anywhere on visible data
panel to make it active.

Annotation property – property that is declared rdfs:subPropertyOf of OWL standard

annotation properties in ISO 15926-8 or used as standard annotation property in a
particular RDL (formally it is also a literal property and in this documentation two sets are
often described beside each other).

Configuration of the Editor (configuration) – configuration of the Editor includes location
of standard files, location of a current project description file, and locations of Python

modules used by the extensions (configuration is kept in the 15926.cfg file in the
<installation_folder>).

Data item – anything identifiable with URI: data type, reference and project data entity,
template definition, template role, property or template role value.

Data panel (panel) – the screen area where data view can be rendered.

Data source (source) - data set opened in .15926 Editor. It can be a file, a group of files, a
SPARQL endpoint, or an internal datatype set.

Data source name root node (root node) – a root node representing data source in a
data tree and named with the data source name.

Data tree (tree) – an unfoldable tree structure used to organise data in data view.

Data view (view) - information extracted from data source and organized for rendering on

screen for exploration and editing (data view may not be actually rendered in any data
panel at a given moment).

Data view node (node) – a node in a data tree representing data source, a data entity or a
group of entities, or any other data item.

Diff view – information about the difference between two data sources rendered in a data

panel for review and approval.

Extension – Python code extending .15926 Editor functionality and integrated in
the .15926 Editor as a set of source-code modules following specified rules.

Initial view – for project and reference data source - data view with only the data source
name root node exposed, for template definitions data source – data view with all templates
exposed.

ISO 15926 - # (Part #) – abbreviations used for # -th part of ISO 15926 standard (parts 2, 4,
7 and 8 are referenced in this documentation).

Literal property – property restricted by some XML Schema type.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 8

Module name – unique name assigned to a data source for referencing in APIs of
various .15926 Platform components.

Object property (role) – property which has data types or data entities as its range
(rdf:type, relationship role, or template instance role are examples of object property).

Pattern – in the context of .15929 Platform pattern is a formally defined list of alternative
(but compliant to ISO 15926) ways to express particular ontological relation between
several entities (Part 7 template axioms are patterns, for example).

Platform component – .15929 Platform software component realizing certain software
functionality (sometimes available to users as documented APIs) and distributed in binary
(compiled) form.

Project description file – local file with .15926 extension containing .15925 project state
(list of data sources and their locations with properties for each data source).

Project panel – the screen area where data sources added to .15926 Editor project and
data views are listed.

Reference and project data entity (data entity) – an instance of ISO 15926-2 data type
or template instance (in non ISO 15926 data sources data entities are just any subjects in
RDF triples).

Relationship – in the context of the Editor interface and in this documentation

"relationship" is often used to refer to all instances of relational types of ISO 15926 – to
instances of relationships proper, of classes of relationships and classes of classes of
relationships, and even to template instances.

Source name – the mnemonic name assigned to data source for convenience of project
browsing. The source name is initially assigned by default rules and can be later changed
to any other text, not necessarily even unique.

Start page – special panel displayed at the first start of the Editor and available as one of
data panels for quick access to recent projects and data sources.

Template definition (template) – RDF graph defining a Part 7 template predicate
according to the requirements of Part 8.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 9

4. User interface

4.1. Interface overview

Typical look of .15926 Editor main window (extensions may alter the main menu):

Interface of the .15926 Editor has the following main elements:

1. Main menu

2. Toolbar
3. Project panel
4. Data panels

5. Properties panel
6. Python console
7. Status bar

8. Data view

All panels and Console can be undocked from the main window by clicking the Undock button on

the title bar of the panel or by dragging the title bar outside of the main window with mouse.
Panels are docked again by dragging the title bar inside the main window.

3
8 4

5

7

2
1

6

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 10

All panels and Console can be rearranged inside the main window. Project panel, Properties
panel and Console can be stacked on top of each other in one area on the main window and

accessed via tabs. Data panels also can be stacked for tabbed access.

Program's font size can be changed by View-Font size… menu commands or by Ctrl+= and Ctrl+-
keyboard shortcuts (increase/decrease) or by Ctrl+MouseWheel. Shortcut Ctrl+0 (Ctrl-Zero)

restores default font size. Font size adjustments are convenient for public presentations.

4.2. Keyboard shortcut list

Main menu

 Alt+Letter - press Alt and use underlined

letter to access Main menu items and their
submenus, use arrows to move in menus

All panels

 Ctrl+= – increase font size
 Ctrl+- – decrease font size
 Ctrl+MouseWheel – increase/decrease

font size
 Ctrl+0 (Ctrl-Zero) – restore default font

size

File
 Ctrl+Shift+N – New project…
 Ctrl+Shift+O – Open project…
 Ctrl+S – Save

 Ctrl+Shift+S - Save as...
 Ctrl+Alt+S - Save all data sources and

current project

 Alt+S – Save snapshot…
 Ctrl+B – Stop task
 Ctrl+Shift+W – Reimport…

 Ctrl+Shift+R - Reload modules
 Ctrl+Shift+W - Reload patterns
 Alt+X - Exit

Edit
 Ctrl+Z - Undo
 Ctrl+Y – Redo

 Ctrl+C – Copy
 Ctrl+Shif+C – Copy text
 Ctrl+X – Cut

 Ctrl+V – Paste

 Ctrl+Shif+V – Paste as triples

 Insert - Insert new item
 Shift+Ins - Add template
 Delete - Delete item or node group

 F5 - Reload item
 Alt+U - Put new UUID onto the clipboard

Search
 F4 – Search endpoints for URI
 F7 – Search PCA endpoint for WIP equivalent

 F6 - Open URI in web browser
View

 F12 – Open element in new panel

 Ctrl+P – Toggles pattern identification
 Ctrl+L – Toggles simplified entity view

 Ctrl+` - Toggles Python console

 Ctrl+T – Toggles Project panel
 Ctrl+G – Toggles Properties panel

Python console
 Up – Line up
 Down – Line down

 Enter – New line
 Tab – Increase indent for selected lines
 Shift+Tab – Decrease indent for selected

lines
 Ctrl+Up - Earlier command(s)
 Ctrl+Down - Later command(s)

 Ctrl+Enter - Run code
Single- or multiline input fields (in pop-up
windows and property grid fields)

 Tab – Next editable field
 Shift+Tab – Previous editable field

 Esc – Cancel editing
 Enter – New line
 Up – Line up

 Down – Line down
Pop-up windows

 Ctrl+Enter – Save data and close window

 Esc – Cancel entry
Project panel context menu

 F10 – Open data source in new panel

Data entity context menu

 F12 – Open entity in new panel



.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 11

4.3. Main menu

Be aware that through extension registration Main menu can be augmented with additional
items. Refer to Volume 3. Extensions documentation volume for more details.

File

 Project…

New project… (Ctrl+Shift+N) – saves current project state, closes all its data

sources, creates a new project and asks for a project description file to keep state of
a new project (the file should have .15926 extension).

Open project…(Ctrl+Shift+O) – saves current project state, closes all its data
sources and asks for a saved project description file to restore an older project (the
file should have .15926 extension). You can just drag Project description file and

drop it on Project panel.

Save project - saves current project state.

Save project as… - saves current project state to a new project description file and
continues a project under a new name.

Recent projects…- opens the list of recently closed projects. Hovering your mouse

over items in the list you can see full file names with paths in the Status bar. The

same list is available as clickable links on Start page with file names appearing as
tips if mouse pointer is hovering over the name.

New data file… - creates new local data source and adds it to the current Project. User is

asked for the mnemonic (non-unique) name of a data source. File location and file name
are selected by user with the first Save command.

Add file(s)…

Choose data file(s)... - adds local data source with reference data (including

template definitions) or with project data to the Project panel. File name(s) are used

as a source name, and the default set of annotation properties (together with
properties inherited from the project) is used for data source. From Project panel
data source can be opened in data panel or panels.

The Editor is designed to work with RDF/XML files. Archives compressed by GZIP
can be added without unpacking.

RDF files in Turtle format can be opened in the Editor as read-only (marked r/o in a

Project panel and in data view root node). Use Save as… command to save them to

RDF/XML for further work.

Combined data source can be created from multiple files by holding the Shift or Ctrl

key in file selection dialogs. Combined data source is opened as read-only (marked
r/o in a Project panel and in data view root node). Use Save as… command to

combine data in a single file to start making changes.

You can select a data file or a group of files in MS Windows environment and drop it

on Project panel.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 12

Part 4 file … - Part 4 file is a representation of Part 4 tables in a legacy RDF format
and can be downloaded from http://rds.posccaesar.org/2009/08/OWL/ISO-15926-

4_2007.

PCA RDL file… - download and unpack PCA-RDL.owl.zip file from
http://rds.posccaesar.org/downloads/PCA-RDL.owl.zip (the file contains copy of PCA
RDL and is sometimes updated, use the newest version available). This data source

is relatively big (more then 57 000 entities, almost 3 ml. triples), so you will see
loading progress. You can continue work with the program while big data sources
are loaded (though some tasks will be queued). You can also interrupt loading by
Ctrl+B or by closing data source with cross button to the right of its name.

Proto and initial set templates file … - proto and initial template set in the
p7tpl.owl file accompanying ISO 15926-8 is included with the Editor distribution in
folder <samples>. The data source is added with default module name p7tpl. Any

other template definition file can be added via this command if required.

Three menu commands above add standard data sources to the Project with
default source names and specialized sets of annotation properties. Paths to
the files can be registered via File – Settings menu command (Paths tab). If

paths are not registered each menu command will ask for location of the file.

If paths to standard data sources are registered – they are added to the

project as read-only (marked r/o). If you want to change them – open the
same files via Add file(s)… - Choose data file(s)... menu command or better
use Save as… command to save a copy and edit it.

(Template file in Camelot format...) – starting from version 1.3 the Editor no longer
supports import of template definitions in Camelot format (legacy RDF serialization
formerly used in iRINGTools software). Probable you will never meet them anymore.

If required – use old versions of the Editor to convert files or contact us for help.

Recent sources… - the list of data sources recently added to the Project for quick
access after the closing. The list contains mnemonic (non-unique) data source
names, not file names, if such names were assigned! Hovering your mouse over

items in the list you can see full file names with paths in the Status bar. The same list
is available as clickable links on Start page with file names appearing as tips if
mouse pointer is hovering over the name.

Add SPARQL endpoint …

Choose endpoint - adds SPARQL endpoint data source to the Project with its URL

as a source name and default set of annotation properties. If a SPARQL endpoint

requires authorisation, name and password can be provided in the opening form.

Four useful SPARQL endpoints are directly available from this menu. They are
added to the Project with default source name and specialized set of annotation
properties.

PCA RDL - http://posccaesar.org/endpoint/sparql. Main endpoint for PCA reference
data library supported and developed in the JORD project.

http://rds.posccaesar.org/2009/08/OWL/ISO-15926-4_2007
http://rds.posccaesar.org/2009/08/OWL/ISO-15926-4_2007
http://rds.posccaesar.org/downloads/PCA-RDL.owl.zip

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 13

iRING Sandbox - http://www.iringsandbox.org/repositories/SandboxPt8/query.
Sandbox for reference data developed in ISO 15926 Information Patterns project

(http://iringug.org/wiki/index.php?title=ISO_15926_Information_Patterns_(IIP)).

IIP Sandbox (templates) - http://posccaesar.org/sandbox/iip/sparql. Sandbox with
base and specialized template sets developed and used in ISO 15926 Information
Patterns project

TechInvestLab Sandbox - http://rdl.techinvestlab.ru:8891/sparql. Sandbox for
reference data support of TechInvestLab.ru modeling methodologies.

Recent sources… - the list of endpoints recently added to the Editor for quick
access after the closing. The list contains mnemonic (non-unique) endpoint names,

not endpoint addresses, if such names were assigned! Hovering your mouse over
items in the list you can see URLs in the Status bar. The same list is available as
clickable links on Start page with file names appearing as tips if mouse pointer is

hovering over the name.

From Project panel SPARQL endpoint can be opened in data panel or panels. An
endpoint data source is always opened as read-only (marked r/o in a Project panel

and in the data view root node.

Save (Ctrl+S) - saves data source selected in Project panel. If data source was not
changed, is newly created, imported, or if data source is marked as r/o (read-only) – this

command is disabled. Use Save as… command in these cases.

Save as… (Ctrl+Shift+S) - saves data source selected in Project panel to a new RDF/XML
file. If multiple files were added as a single data source, they are saved to a single file. If
data source is a SPARQL endpoint, all data items downloaded from it at the moment

(templates or reference and project data) are saved to a file. It is recommended to save
reference and project data files with .rdf extension, template definition files – with .owl

extension. File type Compressed GZIP file (*.gz) can be selected to save disk space, you
can enter name with .rdf.gz or .owl.gz extension in this case. If a file with selected name

and extension already exists overwriting confirmation will be requested.

Save all (Ctrl+Alt+S) – saves all unsaved data sources in Project panel, except new or

imported data sources for which no file names are assigned yet, and saves current project.

Save snapshot...- saves as a new file all data items downloaded from a SPARQL endpoint

(templates or reference and project data) and adds it as a new data source to the Project
panel. For local file data sources the command works like Save as… command. If the file

with such a name already exists overwriting confirmation will be requested.

For commands above make sure that required data source is selected in Project
window when you access the File menu; otherwise you’ll probable see menu

commands disabled or find your commands take effect on unexpected data source.

Stop task (Ctrl+B) – interrupts time consuming load, save, import or search task

(description of task currently executed by the Editor is displayed in the Status bar). Not all

tasks can be interrupted though.

Reimport (Ctrl+Shift+W) – reimports the data for data source created from imported
template definitions or through Import menu.

http://iringug.org/wiki/index.php?title=ISO_15926_Information_Patterns_(IIP)

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 14

Reload modules (Ctrl+Shift+R) – recompiles and reloads extension modules.

Reload patterns (Ctrl+Shift+W) – reloads pattern definitions from pattern files used by the
Editor, allowing to add, edit and test patterns without closing the Editor.

Settings – access the form for registration of extensions and localization toggle. Paths

tab… also allows path registration for external Python libraries (for use in extensions and
Python console) and for three standard data sources opened from File – Add file(s)… menu.

Settings are saved between Editor launches as part of the Editor's configuration
(dot15926.cfg file in <installation_folder>).

Exit (Alt+X) - exits application saving current project, Editor window location and general
panel layout. Notice that no information about data views or open panels is saved! The

notification will appear if you have unsaved files (but not for unsaved endpoint data!).

Edit

Be sure that required data panel is active when you access the Edit menu; otherwise you’ll

probable see menu commands disabled or find your commands take effect in unexpected
data panel.

Undo (Ctrl+Z) and Redo (Ctrl+Y) commands provide a safe editing environment. Undo
and redo data is saved for changes in data and properties of each data source.

Copy (Ctrl+C), Copy text (Ctrl+Shift+C), Cut (Ctrl+X), Paste (Ctrl+V) and Paste as

triples (Ctrl+Shift+V) commands allow to move reference and project data entities and
their properties, whole template definitions, or text from data panels between appropriate

data sources and external applications. Use of a particular command is context-dependant
and governed by specific rules documented in corresponding section of this documentation.

Insert new item (Ins) – adds new properties to entities and new roles to templates (notice

that this command is not used to create any new reference and project data entities!).

Add template (Shift+Ins) – adds new template (base or specialized) to a data source.

Delete item (Del) – deletes data items (data entities, properties, templates and roles,
search results).

Reload item (F5) – reloads all properties (roles, annotations, relationships) of data entity in
focus and reidentifies all patterns it is part to; if focus is on a grouping node or on a single
data entity obtained through local search or SPARQL endpoint query - repeats the query

(useful in case of local changes made or in case of slow or incomplete response from
remote server). Beware, the command refreshes representation of items existing in Editor's
memory or on a remote endpoint and will not reload the data from the local file(s)!

Put new UUID onto the clipboard (Alt+U) – generates and puts onto the clipboard an

alpha-numerical string by concatenating prefix (with default value "id") to the UUID
compliant to RFC 4122 / ITU-T X.667 / ISO/IEC 9834-8. This command can be used to
populate property fields which require unique identification strings. Generated string will

float up in the lower right corner of the Editor window and stored in the Console history.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 15

Search

Search endpoints for URI (F4) – searches all SPARQL endpoint data sources available in
Project for URI of an item in focus (URI of a data entity, URI of an object property occupier,

or URI of template role restriction). If search is successful - search result is added as a new
data view for corresponding endpoint data source in Project. If no results are found – the
message will float up in the lower right corner of the Editor window and stored in the

Console history.

Search PCA endpoint for WIP equivalent (F7) – searches PCA SPARQL endpoint
http://posccaesar.org/endpoint/sparql for data entity equivalent to legacy RDS/WIP entity in
focus (URI in the namespace http://rdl.rdlfacade.org/data#). Search results are added as

new data view for PCA endpoint data source in Project panel. If PCA endpoint is absent
from Project panel – it will be added automatically. If no results are found – the message
will float up in the lower right corner of the Editor window and stored in the Console history.

Open URI in web browser (F6) – launches your system’s web browser and tries to
dereference an URI of an entity in focus (or URI of an occupier of an object property in
focus) via your web connection. The result depends on whether URI is dereferenceable or

not.

Open property URI in web browser – launches your system’s web browser and tries to
dereference an URI of a property in focus via your web connection. The result depends on

whether URI is dereferenceable or not.

All entities from data source – searches current data source (local file(s) or an endpoint)

for all reference and project data entities (all entities used as subjects in RDF triples).
Returns both entities with URI (named or not named) and blank nodes.

All templates from data source – searches current data source (local file(s) or an

endpoint) for template definitions. Template definitions are encoded in a specific way by
complex subgraphs of RDF graph. This command identifies all template definition

subgraphs in a local file(s) or on an endpoint, and represents them in a data tree.

Search for suspicious entities – searches for all entities which do not pass built-in data
verification tests. For descriptions of currently implemented test refer to Data verification

section. This command execution can take a lot of time for big data sources!

View

Open in new panel (F12) – in the Editor you can create many views for a single data
source. This command creates the new view for data item in focus (which contains this item

as the only node below the root node) and opens it in a new panel. You can start navigation
from this node or add other nodes to this view through search/filter field, Console queries or
editing.

Properties nodes, Relationships nodes– toggles corresponding grouping nodes
(Properties and Relationships) in a data tree of any local data source or endpoint. Useful for

compact viewing of data trees. When output of grouping nodes is turned on, they will not be
identified automatically for entities unfolded earlier, use Reload item menu command on
such items or hit F5.

http://posccaesar.org/endpoint/sparql

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 16

Patterns (Ctrl+P) – toggles pattern identification and output of corresponding grouping
nodes in a data tree of a local data source. Turning patterns off can be useful for compact

viewing of data trees and can save processing time if complex patterns are defined and
selected for visualization in project properties. When pattern identification is turned on,
patterns will not be identified automatically for entities rendered earlier, use Reload item

menu command on such items or hit F5.

Simplified entity view (Ctrl+P) – toggles ungrouped pattern view in a data tree of a local
data source. In a simplified view all grouping nodes in a data tree (Properties, Relationships,
Patterns nodes and grouping nodes for individual patterns) are removed and all identified

patterns are visualized directly under the entity node. Only patterns selected for
visualization in project properties are identified. If any of the toggles for Properties,
Relationships or Patterns is turned on – simplified view is turned off. Simplified view for an

endpoint shows only entity labels without any additional data.

Python console (Ctrl+`) (Ctrl+backquote at upper left corner of standard keyboard) -
toggles Python Console panel.

Project panel (Ctrl+T) - toggles Project panel.

Properties panel (Ctrl+G) – toggles Properties panel.

Start page – toggles Start Page.

Toolbar – toggles Toolbar.

Font size – Editor font size can be changed in this submenu or by Ctrl+= and Ctrl+-

keyboard shortcuts, Ctrl+0 (Ctrl-Zero) restores default font size. Font size adjustments are

convenient for public presentations.

Data types

Data types menu commands allow access to built-in data type sets used to organize ISO

15926 data. Each data set is added as a data source to the Project panel and can be
opened in data panel or panels. Data type sets will be opened as read-only and without
possibility to save them to a new file.

XML Schema – contains literal property type set from

http://www.w3.org/2001/XMLSchema# namespace.

Part 2 – contains upper ontology of ISO 15926-2 lifecycle integration schema with

subtype/supertype structure, properties/roles, definitions, dependencies, restrictions and
three sets of URI's. For each data type URIs in three namespaces are known to the Editor:

PCA RDL
http://rds.posccaesar.org/2008/02/OWL/ISO-15926-2_2003# ;

RDS/WIP
http://dm.rdlfacade.org/data# ;

ISO 15926-8
http://standards.iso.org/iso/ts/15926/-8/ed-1/tech/reference-data/data-model# .

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 17

Import

This is an extension menu listing built-in extensions from TechInvestLab.ru. Particular
extensions may be turned off through File-Settings command. Order of menu items may

vary. Refer to Volume 3. Extensions section for details.

Catalog import is an open-source built-in extension for import of reference data from data
model of an engineering catalog application developed by 3V Services company.

Setup catalog dependencies… - opens dialog for catalog data import settings

(settings are saved between Editor launches in the dot15926.cfg configuration file
in <installation_folder>).

Import catalog data from JSON file… - select catalog JSON file for import.

Template import is an open-source built-in extension for import of new template definitions
from spreadsheet format used by iRINGTools software, including generation of URIs for
templates and roles .

Import templates from .xlsx table… - select spreadsheet in .xlsx format for import.

IIP template import is an open-source built-in extension for import of existing template
definitions (together with URIs) from spreadsheet used to populate iRING Tools software.

Import IIP templates from .xlsx table… - select spreadsheet in .xlsx format for

import.

Spreadsheet mapper is an open-source built-in extension for mapping spreadsheets to
patterns and for import of reference and project data from spreadsheets. For more details
refer to Volume 4. Patterns and Mapping.

Build patterns from Excel – opens form for the selection of spreadsheet and
pattern, mapping definition and import.

TabLan import is an open-source built-in extension for import of reference and project data

from TabLan.15926 table language.

Setup TabLan dependencies… - opens dialog of TabLan model import settings
(settings are saved between Editor launches in the dot15926.cfg configuration file
in <installation_folder>).

Import TabLan reference data from .xlsx table … - select TabLan .xlsx file for
import.

Help

About – brings up a window with basic version information.

Check for new version – the Editor tries to access http://techinvestlab.ru and check
whether newer version is available. If newer version is found – opening of download page
in internet browser is suggested.

Documentation – looks for a documentation folder defined at installation and opens it if
found. Tries to access documentation page at http://techinvestlab.ru if local search fails.

http://techinvestlab.ru/
http://techinvestlab.ru/

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 18

4.4. Toolbar

Buttons in block 1 execute File menu commands: Save, Save all

Buttons in block 2 execute Edit menu commands: Undo, Redo, Copy, Cut, Paste, Insert new

item, Delete item, Reload item.

Buttons in block 3 execute Search menu commands: Search endpoints for URI, Search PCA

endpoint for WIP equivalent, Open URI in web browser, Open property URI in web browser,

All templates from data source, All templates from data source.

Buttons in block 4 execute View menu commands: Open in new panel, Python console.

4.5. Project panel

Project is a main data organization concept of .15926 Editor. Data sources (local files and
endpoints) are added to the Project and linked together – whenever URI of some object is met in

one data source, it is automatically identified in other data sources (for local files) or can be
searched with one key strike (for endpoints).

The project has a set of properties - module names, object and annotation properties, inherited by

all data sources in the project (see below for details). Data sources in the project have their own
properties also. Project state (project properties, list of data sources and their locations and data
source properties) is saved to the project description file (local file with .15926 extension).
Standard data sources with registered paths added via Add file(s)… menu command are saved to

the project as references to the standard files. If a project file is opened on another installation of
the Editor – such project will attempt to open standard file(s) of the current installation!

Open data views and content of data panels are not saved with the project!

The name of the project description file is used as a project name. Project name is a top node in
the data source tree rendered in the Project panel. Project name also forms part of the application
name in MS Windows environment and is a part of application window title.

If composition of project properties or data sources are not saved – the project is marked with * in

Project panel and in application name. You can save a project by File – Project… – Save project

menu command or use File - Save all menu command will save the project together with all

unsaved data sources.

Project autosave is enabled in the Editor. If the program stops working – it will ask you to restore

the project at the restart. Only project data is restored, unsaved changes to data sources will be
lost.

To open previously saved project you can just drag a Project description file in MS Windows
environment and drop it on the Project panel.

Current .15926 Project is saved as part of the Editor's configuration every time the Editor is closed,
and restored at a next launch. Configuration is saved to the dot15926.cfg file located in the main
folder with Editor executable (<installation_folder>).

1 4

2 3

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 19

Project panel is a home for the project. Data sources can be added to the Project panel via File
and Data types menus, or directly dropped to it from MS Windows environment (a local file or a

group of local files). Project panel lists all data sources of the Project and all opened data views.
Project panel helps in navigation between data sources and data views.

Project panel tree has a top node icon representing current project. Data sources are

represented as nodes under the project node.

Each data source node has a corresponding data view (it can be rendered in a data panel or not
rendered at any given moment). Every time a new data source is added to the project it appears

as a node in the Project panel. Mnemonic (non-unique) names of data sources are used in Project
panel to identify data sources. Hovering mouse over the data source it is possible to see as a tip
the full path(s) for local file(s) or URL for endpoint.

The kind of the data source is indicated by an icon with a letters:

 - D, reference and project data;

 - T, built-in data types.

Data sources with unsaved data changes are marked with *. Data sources with unsaved changes

to data source properties are marked with italics.

Nodes below each data source node are separate data views opened from this data source. They
can be data views of the same data source, diff views built for comparison with some other data

source, or views of other linked data source. Multiple initial views of the same source can be
opened. Non-initial views opened from particular data items are marked with item’s icon and
named after it.

Cross Close buttons to the right of Project panel nodes will close data views or close and remove
data sources. It is possible to interrupt big data source loading or search box query by closing the

data source. It is often impossible to interrupt a Console query by closing the data source. It is
always better to try File-Stop task (Ctrl+B)

menu command first.

The form of Close button is changed from

cross to circle for unsaved data sources.

On the screenshot there are five data
sources added to the project:

Part 2 types, PCA RDL as local file, PCA

RDL Sparql as remote endpoint, project
data file pid-take-off-rev1.rdf and templates.owl.xml. Remote endpoint is marked as read-only.
Additional initial data view is opened from PCA RDL and separate views on particular elements

are opened from other data sources. PCA RDL is marked with * as its data is changed and

changes are not saved to the data source. PCA RDL Sparql and templates.owl have names in

italics because their properties are changed and changes are not saved to the project description

file.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 20

Closing of any views do not affect data source (therefore no confirmation will be asked). If you
close and remove a data source node from the project all views opened from it will be closed and

data source will be removed from the Editor environment. If this data source is a local file and
there are unsaved changes to its data - you will be prompted to save it. If this data source is an
endpoint – no confirmation will be asked. Be aware that URIs used in some other data sources

may not be visualized properly if you remove data source from the project.

Navigation in Project panel is possible with arrow keys.

There are multiple ways to open a view from a Project panel node or data tree node:

To open data view in a tab of an active data panel:

– double click on a node
– click the right mouse button on a node and select Open;

To open data view in new panel:

– click the middle mouse button on any node;
– click right mouse button on any node and select Open in new panel command;

– press F10 while cursor focus is on a data source.
– press F12 while cursor focus is on a node in data tree.

If a view is already opened in some panel, an attempt to open it by double click or Open command

will make this panel active and its title bar will flash to attract your attention.

4.6. Project properties

You can access project properties in a
Properties panel if you click project node in a

Project panel.

You can start editing editable properties by
double clicking the field with property values.
You can save changed properties by clicking
anywhere outside of the field. Pressing Esc

abandons unsaved changes. You can use
Undo and Redo commands after you've saved changes to project properties.

Properties of the project are:

Location – full path to the project description file (local file with .15926 extension). The field is not
editable.

View patterns – pattern identification in the data source

can take significant time. Using this field you can determine
which patterns will be identified and visualized in data
panels for each entity opened (patterns are visualized for

local data sources only).

Patterns libraries are located in Python files with .py
extension, placed in the <installation_folder>/patterns folder.

The Editor is distributed with initial pattern library
patterns_samples.py,

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 21

Initial pattern set defined in this library depends on three template data sources (see below for
module names help):

- Part 8 initial set in a module named p7tpl (the file p7tpl.owl accompanying ISO 15926-8 is
included with the distribution in folder <samples>);

- PCA MMT SIG set in a module named projtpl (the work-in-progress version of PCA MMT
SIG set is included with the distribution as templates.owl file in folder <samples>\pid);

- IIP template set in a module named iiptpl available as IIT Sandbox (templates) from Files

menu.

IIP template set in a module named iiptpl available as IIT Sandbox (templates) from Files

menu.You can download other pattern libraries from our site as they are released or develop them
yourself. Refer to Volume 4. Patterns and Mapping for more details.

Starting editing this field you will see pattern libraries organized in a tree. You can use checkboxes
to select pattern for visualization in data panel. Unfolding library nodes you can see individual

patterns defined in each library and fine-tune their visualization (note that different options for a
single pattern can be defined in different libraries). You can use All patterns checkbox to quickly

select all or none patterns.

Property values shown for the saved View patterns property are just All, Custom or None. You
have to start editing to find exact settings for Custom value.

Independent of the selection made in this field you can search in the console for any pattern from

any library loaded in the Editor.

Annotations – annotation properties (short names and URIs) for use in all data sources of the

project. Default set of project annotations includes only rdfs:label and rdfs:comment with label
and comment short names respectively.

If you know URIs of other annotations you
would like to use for search and editing in all
data sources of the project – you can add
them to project Annotations. Start editing;

put new annotations on blank lines as
space-separated pairs name URI. If format is wrong – the Editor will indicate an error and will not

allow to save the data. The Editor will not check whether URI is well formed or not!

You can use Cut, Copy and Paste commands to move Annotations between project and data

source properties. Click on the respective line and use a command or keyboard shortcut. Delete
unnecessary annotations with red cross Delete button at the right of the line.

Property values shown for the saved Annotations property are short names of the annotations.

The short names can be redefined for particular files or endpoints in the project.

Roles – custom object properties (short names and URIs) for use in all data sources of the project.

Custom object properties are not defined in Part 2 data model and can be used to record
relationships in a non-reified way. Default set of project roles includes only rdfs:subClassOf with
short name subClassOf, it is sometimes used to record specialization relationship.

If you know URIs of other custom object properties and would like to use them for search and
editing in all data sources of the project – you can add them to project Roles. Start editing; put

new roles on blank lines as space-separated pairs name URI. If format is wrong – the Editor will

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 22

indicate the error and will not allow to save the data. The Editor will not check whether URI is well
formed or not!

You can use Cut, Copy and Paste commands to move Roles between project and data source

properties. Click on the respective line and use a command or keyboard shortcut. Delete
unnecessary roles with red cross Delete button at the right of the line.

Property values shown for the saved Roles property are short names of the roles. The short

names can be redefined for particular project files or endpoints,

Modules – for any data source a unique module name can be defined in the Editor environment
for referencing in API function calls of various .15926 Platform components. Module name should
be an alphanumerical identifier starting with a letter and containing no spaces (underscores are

allowed). For information on module name usage refer to Volumes 2 and 4 of this documentation.

Module name is predefined for standard Part 8 template data source (p7tpl) and can be defined

manually for other data sources of the project.

Starting editing you will see the list of all
named modules. To add a new module name
enter a new name in a key field (see above for

requirements). The Editor will mark the entry
as incomplete. Click on the drop-down menu
and choose a data source. The Editor will

mark as errors all non-unique module names,
and will check whether the name is formed correctly! If any mistakes are found – The Editor will
not allow you to save properties.

Delete unnecessary modules with red cross Delete button at the right of the line.

Property values shown for the saved Modules property are module names of the project.

4.7. Data panels

3
1 2

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 23

Data panels are used for data source viewing and editing. Data panels can be stacked on top of
each other for tabbed access

Data panel can be active or inactive. You can see active (1) and inactive (2) data panels on

screenshot above. Pay attention that corresponding data source in Project panel (3) is selected
automatically when you make panel active.

An active panel has a blue title bar while inactive panels have a grey one. Clicking on a tab, on a

title bar or anywhere inside a visible panel makes it active. At program launch no data panels are
created, only Start page is visible. Data panels are created if opening of a data view is requested.

Data panels can be undocked from the main window by clicking the Undock button on the title bar

of the panel or by dragging the title bar outside of the main window with mouse. Panels are

docked again by dragging the title bar inside the main window. To rearrange or stack data panels
together drag them by the title bar across the main window. Allowed places for panels will be
shown during dragging; dropping on the existing panel of an appropriate type will create a tab. To

close data panel click the cross button on the title bar of the panel. Closing the panel do not affect
data source and data view rendered in it, they remain listed in the Project panel and can be
reopened from it.

4.8. Properties panel

Properties panel contains property grid where you can see all properties of an element in focus
(element can be a project, a data source, a grouping node, a template definition, a data entity, a
property, a role, etc.).

You can select text in any field of the grid and copy its content with Ctrl+C keyboard shortcut.

If a field in a property grid is white – you can edit it directly in the grid. Click once on a text field or
use double-click to start editing properties with list values.

If you are editing a multiline text field – Enter will insert a new line. Tab (Shift+Tab) will save your

changes and move to the next (previous) value field of a property grid. Click on any other field will
also save changes. Esc will abandon all unsaved changes made to the field. You can use Undo
and Redo commands after you've saved changes to properties.

If a property field is grey – you can't edit it in the grid, but sometimes you can change it in the tree
by drag-n-drop process.

Content of a property grid for each kind of an element is described in the corresponding section of
this documentation.

4.9. Console

4.9.1. REPL Environment

Python console is one of the most powerful features of .15926 Platform and can be built into any
application developed on it. Scripting in Python brings all power of general purpose programming

language to data modeller or data miner. The Console is a fully-functional Python REPL
environment which allows user to run simple or complex scripts in Python, and advantages of
Turing-complete language are hard to overestimate. The console scripts can access API functions

of various .15926 Platform components to read, explore and change reference and project data.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 24

Python console is opened through menu View, with Ctrl+` (Ctrl+backquote at upper left corner of

standard keyboard) keyboard shortcut or with a toolbar button.

Console panel has history area (top part) and input area. Type a Python expression in input area
and hit Ctrl+Enter to run it. Try:

print "Hello world"

or

2+2**2

The code executed in the Console has to comply with Python syntax.

You can use help() command to access Python help utility in the console. A prompt help> will
appear in history area. Enter commands under this prompt to get lists of modules, their data
structures, classes and methods (degree of component documentation can vary). Enter quit to

leave help and return to the REPL environment.

4.9.2. Console interface

Console input is saved to input.log file, output is saved to dot15926.log, both files are located in
the main folder with Editor executable (<installation_folder>).

History area is also showing program's diagnostics, storing error messages and notifications.

The history area allows Ctrl+C copy command. Please include console output when reporting

problems encountered during software use. If the program closes unexpectedly, error messages

(if any) can be copied from the dot15926.log file located in the main folder with the Editor
executable (last messages are at the end of the file).

Console allows input and execution of a complex Python language script. In input area Enter will

create a new line, up and down arrows navigate in the input area. Run and input history buttons
are at the bottom of input area, or use Ctrl+Up and Ctrl+Down to access history, Ctrl+Enter to run

the code.

Run file button brings file selection dialog and executes Python code from selected file. Code

executed from the file is not recorded in input history.

Earlier command(s)

Run

Later command(s)

 Run file

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 25

Designing complex Python scripts it is ultimately necessary to manage indentations. You can click
at the start of the line or select several lines of text and increase their indent by pressing Tab or

decrease the indent with Shift+Tab.

4.9.3. Console scripting

If an API function of some .15926 Platform component is called in the console, it will be applied:

– Either to the data source open in the current active panel,

– Or to the data source identified via with context(…): statement.

By default API function called from the console is applied to the data source open in the current
active panel (except functions called as methods of an identified module). If you are going to
search and/or modify several data sources simultaneously and interrelatedly, each API function

call (or several calls) should be wrapped in a

with context("module_name"):

statement. Wrappings can be nested. Any call outside of inner wrapping is again applied to the
data source defined by outside wrapping, if any, or to the data source in the current active panel.

Please refer to the Project properties section for details of module name assignment. See usage
examples below.

To learn about functions available in Python console refer to the Volume 2. APIs of Scanner and

Builder of the documentation, or read about libraries and modules in Volume 3. Extensions. For
specific restrictions on data sources available to various Platform components also refer to the
corresponding API specifications.

If "NameError: name '…' is not defined" error message is displayed on the console history

panel – check whether indeed proper data source is open in your active panel or in a module you
are addressing through with context(…): statement.

Please remember that changes to the data source effected through console function calls

could not be undone!

Some Python libraries are included in the Editor at compilation. If you want to use external Python
libraries in your console code, the Editor may have troubles locating them. You can either copy all
required libraries to the <installation_folder>, or add paths to them in Python search paths: field
(on the Paths tab in the Settings form) as comma separated list. Settings form is available through
File-Settings menu command.

4.9.4. Example scripts

a. Assume you have a need to send an email to a colleague with designations of all reference
data entities in PCA RDL which are instances of Scale type and have "celsius" substring in their
labels.

Open PCA RDL file (or its copy – for safety) via Add file(s)… - Choose data file(s)... menu

command so that you'll be able to change it.

Paste the following script into Console (please honour leading spaces as they are principal feature
of Python syntax, we are sorry but some .pdf readers do not allow you to copy them properly).

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 26

outfile = file('scales_celsius.txt', 'w')
scales=find(type=part2.Scale, label=icontains('celsius'))

for entity in scales:
 designations=find(id=entity, hasDesignation=out)
 for property in designations:

 outfile.write(entity+' : '+property+'\n')
outfile.close()

Press Run button (or hit Ctrl+Enter). Look for scales_celsius.txt file in the main folder with Editor

executable.

b. Let's analyze patterns of data in RDL to identify all possible instances of the template
ClassOfCauseOfBeginningOfClassOfIndividual and form a list of possible signatures in a separate
file. Run the following script:

outfile = file('COCOBOCOI_sign.txt', 'w')

begun=find(type=part2.ClassOfCauseOfBeginningOfClassOfIndividual,
hasClassOfBegun=out)
for elem1 in begun:

 causer=find(hasClassOfBegun=elem1, hasClassOfCauser=out)
 for elem2 in causer:
 outfile.write('ClassOfCauseOfBeginningOfClassOfIndividual('+elem1+','+elem2+')\n')

outfile.close()

And look for COCOBOCOI_sign.txt file in the main folder with Editor executable.

c. Now we'll use two APIs available from console – Scanner and Builder APIs. Make sure that
Proto and initial templates were added to the Project panel through File - Add file(s)… - Proto and
initial set templates file … menu command (to get a proper module name). Open PCA RDL file in

an active panel and run the script:

beguns=find(type=part2.ClassOfCauseOfBeginningOfClassOfIndividual,
hasClassOfBegun=out)
for element1 in beguns:
 causers=find(hasClassOfBegun=element1, hasClassOfCauser=out)
 for element2 in causers:
 p7tpl.ClassOfCauseOfBeginningOfClassOfIndividual(hasClassOfBegun = element1,

hasClassOfCauser = element2)

Instead of writing template signatures to a text file it really adds RDF representations of template

instances to PCA RDL data, as you can check with the query:

show(type=p7tpl.ClassOfCauseOfBeginningOfClassOfIndividual)

Don't forget to delete the new entries with a script (there are no other template instances in PCA
RDL):

added_templates = find(type=p7tpl.ClassOfCauseOfBeginningOfClassOfIndividual)
builder.delete(added_templates)

(or just close file without saving).

d. Let us do the same change in a clean way – create new template instances in a new data
source. Assign module name pca to PCA RDL data source, add new data source to the Project

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 27

panel via File - New data file... menu command (any data source name will do) and assign it the

new_data module name.

Run the following script (now it does not matter which panel is active or whether there are open

data views at all):

with context("pca"):
 beguns=find(type=part2.ClassOfCauseOfBeginningOfClassOfIndividual, hasClassOfBegun=out)
 for element1 in beguns:
 causers=find(hasClassOfBegun=element1, hasClassOfCauser=out)
 for element2 in causers:
 with context("new_data"):
 p7tpl.ClassOfCauseOfBeginningOfClassOfIndividual(hasClassOfBegun = element1,

hasClassOfCauser = element2)

You can check now that new template instances were added to your new file, not to PCA RDL
data source.

Another example script looking for patterns of ClassOfIndirectProperty template:

with context("pca"):
 spaces= find(type=part2.Classification, hasClassifier=out,

hasClassified=find(type=part2.PropertyQuantification, hasInput=out,
hasResult=find(type=part2.RealNumber)))

 for element1 in spaces:
 posessors=find(type=part2.ClassOfIndirectProperty, hasClassOfPossessor=out,

hasPropertySpace=element1)
 for element2 in posessors:
 with context("new_data"):
 p7tpl.ClassOfIndirectProperty(hasClassOfPossessor=element2,

hasPropertySpace=element1)

These scripts can be used in data transformation extension provided as an extension example

and described in Volume 3. Extensions.

4.10. Status bar

Description of task currently executed by the Editor is displayed in the Status bar. Time
consuming load, save, import or search task can be interrupted through File - Stop task (Ctrl+B)

menu command. Not all tasks can be interrupted though.

Status bar also shows full filenames or URLs for items from Recent… lists in File menu (the lists

themselves contain mnemonic (non-unique) data source names).

4.11. Data view

Each data panel with an open data view has a filter/search box on top and a data tree below it.

4.11.1. Filter/Search box

Each data panel with an open data view has on top a filter box or a search box.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 28

Filter box appears for built-in data type sets and for diff views. For built-in data type sets filtering is
performed on the fly as each new character is added to the filter box. For diff views filtering

requires Enter key or mouse click on a magnifying glass icon.

For data sources with filter box an element counter is located after the data source root node.

Element counter shows number of items displayed with current filter and total number of items in
the filtered data source view.

 Reference and project data sources have a search box. In initial view for these data sources the

data tree is represented by data source root node only. After opening of an empty initial view of a
data set, try using the search box.

Search box has two operating modes:

- Search in names
- Search in URIs

The modes are changed by a click on a blue icon for drop down menu at the right end of the

search field.

There is no wildcard support in the released version; all searches look for a substring (case-
insensitive). Please be careful with Empty search (strike Enter with cursor in the empty box) for

really large remote data sources (endpoints)! Search box queries for local data sources can be
interrupted by File-Stop task (Ctrl+B) menu command.

Use menu command Search - All templates from data source or corresponding Toolbar button to

look for all template definitions which may be present in a local data source or on an endpoint.

This command looks for complex RDF subgraphs used to represent templates and renders them
in a data tree.

Search in names

For SPARQL endpoints name search in the search box is looking only for rdfs:label property.

For local data sources (files) name search in the search box is looking for names of reference and

project data entities. Names of entities can be represented by different literal and annotation
properties in different data sources. Properties are searched in the following order:

1. rdfs:label
2. pca:hasDesignation
3. dm:hasContent

4. meta:annUniqueName

If the property from this list is present for an entity and doesn't match search condition,
subsequent properties for this entity are not checked. If a property is absent, the search checks for
the next property. The name search returns an entity as soon as some property value matches the

search condition.

Empty search (strike Enter with cursor in the empty box) in name search mode looks for all named

entities in the data source.

If naming of entities in a reference and project data source is done via some other annotation
property, through identification relationships or with identification template instances, name search

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 29

in a search box will bring nothing. Use show(type=part2.any.Thing) or show(type=icontains(''))

query in the Console to find all typed entities in local file data source, or use an URI search.

Search in URIs

URI search looks for a search string in URIs of all reference and project data entities (all entities
used as subjects in RDF triples of a data source). It can also return blank nodes of the original
graph as it is also looking through blank node IDs.

Empty search (strike Enter with cursor in the empty box) in URI search mode is equivalent to
Search – All entities from data source menu command or to show(id=icontains('')) query in the

Console.

4.11.2. Data tree

1 Data source or grouping node Nodes in data trees are marked
with icons. See the table at the

left for the list of icons you can
find in the tree and their
meanings.

Many nodes contain plus sign
before them which can be
unfolded to explore the data

tree further. Sometimes the plus
sign before an entity will not
allow unfolding – meaning that

an entity from other data source
is referred here (or that all
additional node groups are
turned off via View menu). If an

additional data source is
present in the project, F12 will

open that entity in a separate

data view where it can be
explored. Or you can search for
an entity at available endpoints
with F4.

Nodes representing groups of
entities contain counter of

subnodes in the group. If
counter is greater then zero –
the group can be unfolded.

Working with an endpoint you
may notice that counter value
changes for some time as

Editor receives additional
replies from an endpoint.

2 Thing, AbstractObject and all its subtypes, except:
MultidimensionalObject, relational data types
(ClassOfClassOfRelationship,

ClassOfRelationship, Relationship),
ClassOfClass and their subtypes

3 ClassOfClass and its subtypes, except relational
data types

4 MultidimensionalObject, PossibleIndividual and
its subtypes

5 ClassOfClassOfRelationship and its subtypes

6 ClassOfRelationship and its subtypes

7 Relationship and its subtypes

8 Instance of types listed in row 2 above

9 Instance of types listed in row 3 above

10 Instance of types listed in row 4 above

11 Instance of types listed in row 5 above

12 Instance of types listed in row 6 above

13 Instance of types listed in row 7 above

14 Template type

15 Template definition (subclass of
BaseTemplateStatement)

16 Specialized template definition (subclass of
RDLTemplateStatement)

17 Template instance

18 Recognized non-ISO 15926 typed entity (XSD
Schema, some OWL classes)

19 Registered annotation or literal property (standard
or custom)

20 Standard object property

21 Unregistered annotation property

22 Unrecognized entity (with absent, improbable or

unknown type)

If a group of entities in a reference and project data source tree contains more then 1000 entities
they are displayed in portions to speed up an output. Please click …more node at the end of the
tree to see the next thousand.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 30

4.11.3. Data tree overview

We have several types of data sources and each can
contain data trees with different nodes. Tree node

kinds, information available at their unfolding and their
properties are described below.

XML Schema type

XML Schema type data view contains data types for

representation of strings, numbers, dates and the like.
Tree node in it has no any additional information and
can not be unfolded. Property grid for an XML Schema

type contains its URI and name.

Part 2 type

Part 2 data view allows access to the upper ontology of

ISO 15926-2 lifecycle integration schema. The view has
a filter box, and all entity types are loaded

simultaneously. You will see the full list of ISO 15926-2

types organized alphabetically. This data source is built
in the software and is opened as read-only. You can
see number of types displayed with current filter and

total number of types (201 of course).

Try to type "arran" in the Filter box.

By expanding the nodes in the tree you can access for
any type:

Membership restrictions: node groups Can classify
and Can be classified by contain class membership

restrictions as they are defined in ISO 15926-2.

Modeling of membership restrictions is based upon the
augmented model initially published at
https://www.posccaesar.org/wiki/ISO15926inOWLPart2

EntityMembership. Some missing relations are added
to the Editor data model of Part 2:

– instances of Class can classify instances of
Thing;

– instances of EnumeratedSetOfClass can
classify instances of Class;

– instances of Scale can classify instances of

PropertyQuantification;
– instances of PropertyRange or

SinglePropertyDimension can classify

instances of Property.

Membership restrictions inheritance is inferred for the
type hierarchy (all inferred nodes placed in the same

group).

https://www.posccaesar.org/wiki/ISO15926inOWLPart2EntityMembership
https://www.posccaesar.org/wiki/ISO15926inOWLPart2EntityMembership

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 31

Subtypes and Suprtypes: node groups Subtypes and Supertypes allow navigation of a type

hierarchy.

Some changes are introduced into the type system to facilitate data verification. Supertype -

subtype relationships which are incompatible with OWL model are removed for the following type
pairs:

Relationship - ClassOfRelationshipWithSignature

ClassOfRelationshipWithSignature - ClassOfClassOfRelationshipWithSignature

Roles: node group roles contains all roles for relational entities with their type restrictions

(EXPRESS attributes in Part 2 representation). Unfolding of nodes in this group allows further
exploration of type tree from role restriction type.

Has role in: node group has role in contains all roles where the type is a restriction. Unfolding of

nodes in this group allows further exploration of type tree from corresponding relational entity.

Disjoint with: node group Disjoint with contains the type all the types it is disjoint with as declared

by Part 2 and inferred for the type hierarchy (all inferred nodes placed in the same group).

The model of disjoint types is enhanced to facilitate data verification. Disjoint statements are
added for types in the following sets:

Types Class, MultidimensionalObject and

Relationship are declared disjoint.

Types ClassOfClass,
ClassOfMultidimensionalObject and

ClassOfRelationship are declared disjoint.

Property grid for a Part 2 type contains three URIs of this
type in three different namespaces: as used in PCA RDL, as
were used in retired RDS/WIP, and as defined in ISO 15926-

8. Property grid also contains a type name and standard
textual definition of a type with notes and examples used in
the standard.

Property grid for a role of a Part 2 type contains three pairs
of role URI - restriction URI (in the same three namespaces)
and description of restricting type. Unfolding the role node

you will start exploring its restricting type.

Reference and project data source

Select the data source in the Project panel or click on the
root node in data tree to see property grid for the data source in Properties panel.

Properties of all data sources of the project are saved in a project description file and restored at a
next launch or at an opening of a saved project, until data source is removed from the project.
Properties of the data source are restored as they were at the moment of removal if data source is

restored from the list of recently closed data sources.

Click once on a text field or use double-click to start editing properties with list values. Editing of
lists is described in project properties section.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 32

Tab (Shift+Tab) will save your changes and move to the next (previous) value field of a property
grid. Click on any other field will also save changes. Esc will abandon all unsaved changes made

to the field. You can use Undo and Redo commands after you've saved changes to properties.

Properties of the data source are:

Name – mnemonic name assigned only for
convenience of use. When data source is added to

the project the name is predefined for built-in or
standard sources, and assigned by default rules for all
other data sources (as a file name(s) for local sources
and an URL for endpoints). Name can be edited in a

grid (except for data type sets). Meaningful name
assignment is useful for navigation in a complex

project with many panels open.

Location - data source location (file, multiple files or
endpoint URL).

Module name – unique name used for referencing in

API function calls of various .15926 Platform
components. Module names are defined in project
properties.

Part 2 namespace – the namespace used for identification of Part 2 types in a data source. One
of three namespaces should be used: PCA RDL, legacy RDS/WIP or ISO 15926-8 (refer to the
section Part 2 types above). The namespace can be changed manually; you can copy it from

corresponding Part 2 type URI, for example.

The software will try to recognize the Part 2 namespace of a data source, and new data sources
are by default created with PCA Part 2 namespace. Please check the namespace before editing,
compare it with URI of type identifiers in the data set and change if necessary. The Editor will

visualize source with mixed type identifiers (from the three namespaces only), but SearchLan
queries will correctly identify entities only in the Part 2 namespace registered in property grid.

Namespaces – the list of namespaces and namespace aliases used in the data source. Aliases

are used for URI visualization in data tree. The list is predefined for built-in or standard sources,
and standard namespaces xsd, owl, rdf and rdfs are added for all data sources used. The

software will try to recognize namespaces of newly added data source.

It is possible to edit namespaces in the grid (useful for changing namespace aliases) or add new
namespaces. Editing is done by adding, changing or removing space separated pairs alias
namespace in the list editing form opened with double click. But do it with care!

Annotations –annotation properties (short name and URI) used in the data source. All data

sources in the project inherit annotations defined in the project properties, but inherited short
names and/or URIs can be overwritten or deleted for a particular data source.

Specific sets of annotation properties for standard files or endpoints are predefined and added by

the Editor if standard data source is opened via corresponding menu command. Data sources
created by extensions (import from TabLan files or from example catalog JSON files) also have
their own specific annotation sets. All other reference and project data sources are opened with

default set of annotations which includes rdfs:label, rdfs:comment and all annotation properties
defined in the Part 8 (annUniqueName, annSynonim, annSource, annNotes, etc.). Arbitrary

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 33

annotations used in a data source are not automatically recognized when it is added to the project.
If you know URIs of such annotations and want to facilitate search for them – you should add

them to project or to data source properties manually. Editing is done by adding, changing or
removing space separated pairs name URI in the list editing form opened with double click.

Annotation property defaultRdsId (with URI http://posccaesar.org/rdl/defaultRdsId) is predefined

for standard PCA endpoint and PCA RDL file if they are opened through menu command.

Roles – the list of custom object properties (short name and URI) used in the data source. All data

sources in the project inherit object properties defined in the project properties, but inherited short
names and/or URIs can be overwritten or deleted for a particular data source.

Custom object properties are not defined in Part 2 data model and can be used to record

relationships in a non-reified way. Custom object properties, if used in a data source, will not be
automatically recognized when it is added. If you know URI of such properties and want to have
correct visualization and facilitate search for them – you should add them to project or to data

source properties manually. Editing is done by adding, changing or removing space separated
pairs name URI in the list editing form opened with double click.

The property subClassOf is inherited as a custom object property from default set of project

properties.

Custom object property rdsWipEquivalent (with URI http://posccaesar.org/rdl/rdsWipEquivalent)
is predefined for PCA endpoint if it is opened through menu command File - Add SPARQL

endpoint …- PCA RDL. It is used to keep links to the legacy RDS/WIP URIs (Rnnnnnn numbers).

Namespace for new entities – the namespace used by default for new entities created in the

data source (if URI is not directly specified at entity creation, see below). It is possible to change
namespace during the editing and create some entities in a new namespace, but use this option

with care, as older namespace will be saved with a non-meaningful alias difficult to recognize later
on.

p7tm – namespace for template metamodel ontology used in template definitions if they are

contained in the data source. This namespace has changed during Part 8 development and may
change in the future. The Editor will recognize namespace used in the loaded data source. For a
new data source the Editor uses by default the latest standardized namespace
http://standards.iso.org/iso/ts/15926/-8/ed-1/tech/reference-data/p7tm#. Namespace can be edited

by clicking on the field, but it is not recommended to do so.

Generate human readable URI for new templates – this property has two values. If it is set to

True, new templates and new roles created in the data source will receive human-readable URIs
by using template and role names as fragment identifiers in namespace defined by Namespace
for new entities property. It set to False – URIs for new templates and new roles will be generated

as UUIDs compliant to RFC 4122 / ITU-T X.667 / ISO/IEC 9834-8 in the same namespace.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 34

Data entity

 A node in a data tree of a data source
represents a data entity. Data entity in ISO

15926 compliant data source can be an instance
of Part 2 data type, a template definition or a
template instance. The type of an entity forms a

part of the node name after the colon ":" (except
for template definitions). The type is also is
reflected in entity icon (see table above).

For an entity the following useful commands are
available through Edit, Search and View menus

or through context menu at right mouse click:
Reload item (F5), Search endpoints for URI (F4),
Open URI in web browser (F6), Open in new
panel (F12). For command descriptions refer to

the corresponding Main menu section.

When unfolded, each entity has Properties and
Relationships node groups. For local data
sources there is also Patterns node group.

Rendering of node groups can be toggled via
View menu. Special Simplified entity view can be

turned on hiding all node groups except the
content of Patterns group.

In terms of RDF model Properties group is based
on triples where an entity in focus is RDF subject,

and Relationships group is based on triples
where in entity in focus is RDF object. Group

names are chosen to represent ISO 15926

specific usage of RDF. With fully functional RDF
viewer/editor at the core, .15926 Editor can
parse and present any RDF compliant data set.

Visualization of data is specifically tailored for
ISO 15926, but analysis of other RDF/OWL data
sets is still possible. Please refer to the Volume

2. APIs of Scanner and Builder of the
documentation and look for section "Non ISO
15926 sources" for more information.

Properties group contains object, literal and annotation properties of an entity.

All entities modeled compliant to ISO 15926 should have an object property rdf:type with Part 2

type or template value (other OWL types may be seen in addition to that). Further unfolding of a
type node in Properties group allows exploration of all instances of this type in the data source,

which can take some time. Part 2 type can be explored as data model element by clicking it and
pressing F12.

Other object properties include relationship roles and template roles (if this template role has

object value). Object role nodes can be unfolded, allowing exploration of role occupiers, if role
occupier is from the same data source. If an object role is occupied by an entity from other data

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 35

source, unfolding is impossible, but F12 will open that entity in a separate data view where it can

be explored in its original data source context (if available).

If an object property is occupied by an entity which is not available in the project, an icon with

question mark "?" followed by its URI will be shown. You can try search on project endpoints with
F4. Please refer to the section Looking for unrecognized entities to see recommendations for such

situation.

Literal properties are properties restricted by some XML Schema type: string, numerical, date or
other literal values. Some Part 2 type instances may possess literal properties (hasContent

property of EXPRESS information representation entity types or values of Cardinality type, for

example). Some template instances have literal properties for roles as well (strings or numerical
cardinality values, for example).

Annotation properties are literal properties declared as rdfs:subPropertyOf of OWL annotation

properties according to ISO 15926-8, or used as standard annotation property in a particular RDL.

The set of known annotation properties used in the standard data source is described in the data
source property grid as described above.

The roles for particular types of entities (Part 2 types or templates) are

defined by corresponding data models. Built-in verification on the
Editor will attempt to determine whether an entity has missing
mandatory roles and whether present roles are proper for this entity
type. Properties node group and/or roles themselves will be marked

with corresponding error or warning signs. Text messages describing
an error or a warning will appear if mouse pointer is hovering over the icon. See Data verification

for more details.

Relationships node group lists all relationships and template instances in which an entity is playing
a role. Each node in Relationships group has the form roleName for relationship, indicating that

entity in focus occupies specific role in relational entity (class of relationship, relationship, template
instance, etc). For data source with non-reified relationships (usually non ISO 15926 data source)
such wording can be misleading and its correct interpretations requires understanding of RDF

triple concept!

Two commands:

 Open URI in web browser (F6) for the role occupier and

 Open property URI in web browser for the role itself

are available through Search menu or through context menu at right mouse click. For command

descriptions refer to the corresponding Main menu section.

Each node in the Relationships group can be unfolded to further explore the relational entity itself.

Patterns node group lists all identified patterns – formally defined alternative (but compliant to ISO
15926) ways to express particular relationship between an entity and other entities. Patterns

group contains subgroup nodes named after the role played by an entity. Each subgroup contains

entities which are identified as forming a pattern with explored entity. For example, is subclass of
pattern subgroup contains all identified superclasses of an entity, is part of subgroup – all entities
which are wholes (classes of wholes) for entity in focus.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 36

Further unfolding gives an access, in addition to
regular data on the entity, to a full data on
identified pattern. Special Reason node group

contains all entities involved in the identified
pattern, including pattern signature entities,

relational entities (instance of relationship or
template) connecting the signature entities
(probable by relating them through other entities

making up the pattern), and these other entities.

Refer to Volume 4. Patterns and Mapping for
detailed information about patterns, pattern
signatures, direct and inverse role names used

in pattern visualization.

Pattern definitions are loaded for data source at
the time data source is added to the project. If

you've changed pattern definitions, added a new pattern library or added missing template
definition module to project – use File - Reload patterns menu command (Ctrl+Shift+W). New

patterns will be identified for entities. To see new patterns for entities which were already unfolded
– use Reload item command (F5).

Pattern identification and Pattern node group visualization can be toggled by the View - Patterns
menu command (Ctrl+P).

Relationships node group for template instance usually has zero elements. Patterns node group

for template instance can have its type and label identification if corresponding patterns are
defined.

All node groups and subgroups can be
turned off by the View - Simplified entity
view command (Ctrl+P). In the simplified

view only entities which are included in

identified patterns for an entity in focus are
displayed (with corresponding inverse
pattern role labels).

Property grid for reference and project data
entity contains the Source name with the

name of its source, URI and Name of the
entity, all non-editable, and also all

annotation and literal properties of the entity,
all editable. It is impossible to delete a
property in the grid, if you delete content of an editable field – this property will get an empty string
as a value. To delete a property do it in a Properties group in a tree.

Remember that changes to properties of an entity retrieved from an endpoint can only be saved to
a local file.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 37

Property of a data entity

 A node for an annotation or literal
property contains property name (or URI if
no short name is registered in Annotations

of a data source) followed by property
value. For an annotation or literal property
the command Open property URI in web
browser is available through Search menu

or through context menu at right mouse

click.

Property grid for an annotation or literal
property node contains property URI,

property name (URI is used as a name if
no short name is registered in Annotations

of a data source) and property value (editable). It is impossible to delete a property in the grid, if

you delete content of an editable field – this property will get an empty string as a value. To delete
a property do it in a Properties group in a tree.

A node for an object property (role) contains property name (or URI if no short name is available
to the Editor through data model, template definitions or Roles field in the properties of a data

source) followed by a name or URI of role occupier and its Part 2 type.

Two commands:

 Open URI in web browser (F6) for

the role occupier and

 Open property URI in web browser

for the property itself.

are available through Search menu or

through context menu at right mouse click.

For command descriptions refer to the
corresponding Main menu section.

Property grid for an object property node
contains the Source name with the name of

data source, property URI and property
name, followed by URI and all properties of
an entity which is occupying the role.

For further exploration in the Editor
interface the node of object property

behaves exactly like the node representing role occupier. You can unfold it (if it comes from the

same data source) or open it in a new panel (if it comes from another data source in the project).

Template definition entity

An unfolded template definition node in a data tree of a data source contains (in additional to node
groups described above for any entity) a Roles node group. Nodes in it represent a signature of

an ISO 15926-7 template.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 38

For a template specialized from other template the
unfolded node also contains the node for parent template.

Properties and Relationships node groups for a template

definition contain many specific nodes derived from
complex RDF subgraph of template definition. They are
mostly marked with ? and it is not advisable to edit these

nodes manually.

Property grid for a template has the same fields any other
reference and project data entity has: Source name with

the name of its source,
URI and Name of the
entity, all non-editable,

and also all annotation
and literal properties of the
entity, all editable.

Template role

A template role node in a data tree of a data source contains role index, role name and role
restriction shown after the colon ":" or "=" sign. Role restriction may be by a Part 2 type, or by a
reference data entity.

If the role is restricted by value, the role node in the tree contains "=" sign. Restriction by value
means that in a specialized template one of the roles of parent template is always occupied by a
restricting entity.

Template role can be unfolded giving an access to the node representing restricting entity. This

entity can be further explored either in the context of the current data source, or in the context of
its original data source (if it is also present in the project) by opening it in the new panel by
pressing F12.

Property grid of a template role contains role index, role URI and name, comment, restricting
entity and whether restriction is by value (True) or not (False).

Template role can be opened in a new data panel (press F12) as an object or datatype property

for exploration in the context of OWL/RDF template definition. In this way annotation properties or
classifications of a template role can be explored via its Properties, if they are present in the data
source.

Grouping node

Nodes representing groups of other nodes always contain
counter of subnodes in the group. If counter is greater then
zero – the group can be unfolded. Working with an endpoint

be aware that counter for some groups may change for
some time as Editor receives more answers from an
endpoint.

Some grouping nodes have a predefined name (as Properties or Roles groups, etc.).

If grouping node contains results of a name search through search box at the top of data panel, it
has the name Having "string" in names:

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 39

If grouping node contains results of an URI search through search box at the top of data panel, it
has the name Search for "string":

If grouping node contains results of an All templates from data source menu command
(executed from Search menu or from a Toolbar), it has the name Templates with "" in names:

The property grid for these kinds of grouping nodes is empty.

If a grouping node was formed as a result of SearchLan query through Pytnon console, the name
of a node will be just Found: with a counter. The property grid for this node will contain the full text
of a query and will allow copying (click with mouse, select and press Ctrl+C).

The grouping node with search results can be deleted by pressing Del. This operation frees

memory and can speed up Editor's performance if deleted group contains many data entities.

Deletion of search result grouping node does not affect entities in the group.

4.12. Diff view

The Editor can build structural diff for two local RDF data sources (including an attempt to identify
equivalent blank nodes in RDF graphs). The Editor organizes diff data in a special data view for

review and approval. You can save a diff for storage in a versioning system or for exchange with
other participants in distributed change management process.

Some theoretical background on comparing RDF graphs and Semantic Web data synchronization
can be found in:

 "Delta: an ontology for the distribution of differences between RDF graphs" by Tim Berners-
Lee and Dan Connolly, MIT Computer Science and Artificial Intelligence Laboratory

(CSAIL) http://www.w3.org/DesignIssues/Diff .

 “SEMVERSION: An RDF-based ontology versioning system” by Max Völkel, FZI /

Universität Karlsruhe and Tudor Groza, DERI, National University of Ireland,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.84&rep=rep1&type=pdf.

Data comparison available in this version of the Editor is only a starting point for change and
configuration management processes for reference and project data which can be supported

on .15926 Platform.

4.12.1. Comparing data sources

The Editor allows comparison between two local data sources.
Each local data source can be open from one or several local

RDF files. To avoid confusion it is recommended to assign
unique names to each data source (Name field in the property grid for the data source).

In the Project panel click a local data source with right mouse button and navigate to Compare

to… submenu of a context menu. You will see the list of all other local data sources in the Project.

Select any of them for comparison. The Editor will stop responding for some time; duration
depends on the size of data sources and number of changes. Please wait till diff view appears on

the screen.

Diff will be created and opened as a special data view under the data source selected first in
Project panel. This data source can be thought of as "older", and the one selected for comparison

can be considered a "newer" one. The diff is built from "older" to "newer" source, and the diff view
is placed under the "older" one in Project panel with the name of Diff to "newer source name".

http://www.w3.org/DesignIssues/Diff
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.217.84&rep=rep1&type=pdf

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 40

During the revision process accepted changes will be applied to the "older" data source. If all
changes are accepted, the "older" data source becomes structurally identical to a "newer" one.

Of course you can compare data sources which are not really "older" and "newer" versions of

each other. Comparison can be useful for data source merging, as Cut-and-Paste process is
really complex for large data sets (Paste command will either overwrite all existing data about

pasted entity in target data source or duplicate properties, refer to Cut, Copy and Paste Data

section for more details). If you want to merge two data sources ("target" and "source"), build a diff
from "target" to "source" and review all additions and changes in it (see below about filtering
additions and changes from deletions).

4.12.2. Diff panel tools

Diff panel toolbar has the following buttons:

 1 2 3 4 5 6

Filters:
 1. Changed

 2. Added
 3. Deleted
4. Accept all

5. Save diff
6. Save filtered diff

4.12.3. Reviewing changes

Entities from two data sources are compared to each other if they have the same URI in both data

sources (special algorithm is used to identify equivalent blank nodes). Compared data entities are
considered unchanged if all their annotation, literal and object properties' values are the same.

Diff view contains reference data entities which were changed, added or deleted in the "older"

data source compared to "newer" one. Entities can be unfolded to view their properties and
relationships as it is done in other views (patterns are not shown in diff view).

Added entities are data entities which are present in "newer" data source only. Added entities are

highlighted in green. All their properties are also highlighted in green.

Deleted entities are data entities which are present in "older" data source only. Deleted entities
are highlighted in red and stricken through. All their properties are also highlighted in red and
stricken.

Changed entities are entities which are present in both data sources with the same URI and for
which some (or all) annotation, literal or object properties were changed (edited, added or deleted).
Changed entities are highlighted in blue. Their Properties group contains added properties in

green and deleted properties in red. Changed value of a property is visualized as one added and
one deleted property. Properties which are identical in both data sources are displayed for
convenience, once and without highlighting.

If an entity has its label changed, it will appear in a diff view as a node with two different names
following one another.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 41

Diff view has counter of a total number of entities in it and a counter for filtered view (see below).
Entities are shown in increments of 1000 subjects. To add a next group of subjects to the panel go
to the end of the list and double-click …more line.

4.12.4. Accepting changes

Changes can be accepted individually by double click on an entity or on a property. For accepted
change highlighting is removed.

If all property changes of a deleted entity are accepted – deletion of an entity is accepted. If only

some property changes of an added entity are accepted – it is added to the "older" data source
and becomes changed entity (highlighted in blue).

Changes applied to entities or properties individually can be undone-redone by corresponding

buttons.

It is possible to accept all changes with Accept all button. In a filtered view only filtered changes

(including those that are not yet loaded to the panel) will be affected.

When some changes are accepted, data source from which the diff was built is marked as

changed with * before its name. Big volume of accepted changes can not be undone, you will be
notified in such cases. You can either save data source to the same or different location, or
remove it from the project without saving.

4.12.5. Filtering diff view

Diff view can be quite large – comparison between versions of PCA RDL from April 2012 to March
2013 reveals 74949 entities changed, added or deleted.

To help in a review process Diff view can be filtered in a number of ways:

- via filter buttons on a toolbar, allowing to show changed, added or deleted entities, or any
combination of these three categories;

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 42

- via Filter box at the top of the panel entities can be filtered by name (not by URI) as

described in the corresponding documentation section;

- via SearchLan function show, which can be used for entities in diff view with queries

documented in Volume 2. APIs of Scanner and Builder of the documentation.

Filtering by Filter box and by show filter is applied to entities filtered by buttons. Pressing any filter

button will clear all other filters.

New show filter or box filter will clear previous show filter. But show filter can be applied to the
results of preceding filtering by Filter box.

To clear all filters (except buttons) use empty box filter.

4.12.6. Saving the diff

Structural diff can be saved to an RDF file. TriG file format, developed for storage of several

named RDF graphs in a single file, is used for diff data. Read "Proposed TriG Specification (the
short form)" (Editor's Draft 26 June 2010) at http://www.w3.org/2010/01/Turtle/Trig to learn more
about TriG.

Diff data is stored as two named graphs (non-URI names are used for test purposes in the current
version of the Editor and will be replaced in future versions with semantic markup to support
change and version management systems):

- graph named <deletions> with all triples present in "older" data source and absent in "newer"

data source;

- graph named <insertions> with all triples present in "newer" data source and absent in "older"

data source.

Notice that it is deleted and inserted triples which are stored in the file. To retrieve information
about deleted, added and changed entities these triples should be processed by the Editor!

By pressing Save diff button all diff data is saved to a single file.

By pressing Save filtered diff button it is possible to save only the data which comprises filtered

changes. For example, it is possible to save only data (triples) for changed entities, only for added
or deleted, or for a combination of these.

4.12.7. Applying the diff

If you've saved a diff file or received it from somewhere – you can apply it to a data source. Diff
can be applied to a data source it was built from (“older” data source) or to any data source for
merging purposes, as described above.

Click the data source in Project panel with right
mouse button, select Apply diff... command from

context menu and chose one diff file (in TriG
format). Software will stop responding for some

time; duration depends on the size of the diff.
Please wait till comparison panel with difference data appears on the screen. You can review and
accept changes as described above.

http://www.w3.org/2010/01/Turtle/Trig

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 43

If you have saved difference as several diff files (for example filtered by changes, additions and
deletions) – you can apply, review and accept them one after another in any order.

If you have a saved diff file and a data source

which was comparison target (“newer” data
source) – you can apply diff in an inverse way,
to get back to “older” data source used in

comparison. Click the data source in Project
panel with right mouse button, select Apply inverse diff... command from context menu and chose

one diff file (in TriG format). You can review and accept changes as described above. If all

changes are accepted – your data source will become equivalent to the initial data source (the
data source that the diff was built from).

Inverse diff application can be useful in reference data library version management. Versioning

system can provide access to current RDL version and to the series of incremental diff files for
previous versions. It will be possible to obtain any earlier version by applying this diffs inversely.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 44

5. Data editing

5.1. URI and UUID generation

Each time a new entity is created in .15926 Editor, a form appears allowing among other fields

manual URI entry. No check is performed whether manually entered URI is unique and well-
formed or not. Data entity with URI which is not unique or well-formed can make data source RDF
non-compliant and uninterpretable!

If URI field in the form is left blank, the URI will be formed in the namespace defined as a
Namespace for new entities for the edited data source, using the following fragment identifier:

a. Template name or role name as a fragment identifier for a new template definition
(including new specialized template definition) or a new template role, if property Generate

human readable URI for new entries is set to True.

For example: http://example.org/tpl#SpecializationOfTesting

b. Fragment identifier made by concatenating prefix string (with default value "id") with the
UUID compliant to RFC 4122 / ITU-T X.667 / ISO/IEC 9834-8 for:

- a new template definition (including new specialized template definition) or a new
template role, if property Generate human readable URI for new entries is set to
False,

- a new instance of Part 2 type or a new template instance.

For example:
http://example.org/tpl#idb9424h86-gjje-kd45-hg24-gd568jgf6778
http://example.org/rdl#idc117f8a9-b305-4fde-b85d-ba27a166889d

To change default value of a prefix string for a particular data source, open it in a data panel and
execute command builder.set_uuid_prefix('new prefix') in the Python console. For example, to
make Editor generate RDS-UUIDs in the PCA RDL style execute:

builder.set_uuid_prefix('RDS')

The prefix can be changed only for editable data sources, for read only data sources this
command will return an error. You can define different prefixes for different data sources. The
prefix will be stored in project description file as data source property. The command Edit - Put

new UUID onto the clipboard (Alt+U) will generate a UUID with the prefix defined for the data

source in active panel.

Current version of the Editor does not support automated creation of URIs with human-readable

fragment identifiers from labels for Part 2 type instances. The rules for label-to-URI conversion are
not determined for ISO 15926 compliant reference data entities.

The editor supports the requirement imposed by JORD project to assign a special annotation
property with unique value to all reference data entities, including templates and their roles. This

persistent identifier should remain immutable during the life cycle of a reference data entity, which
may involve changes in namespace or whole URI change.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 45

To do this a special annotation property with short name defaultRdsId should be added to project
Annotations or data source Annotations. For PCA RDL and federated data libraries this property

has now URI http://posccaesar.org/rdl/defaultRdsId . It will be added by default to all new
projects created in the Editor. If URI (not a short name!) is changed – all new entities will receive
the annotation with new property (remember that annotation defined for a data source has the

precedence over the annotation for the project). If defaultRdsId property is absent from both data
source and project – new entities will not receive it.

Value for the defaultRdsId is defined exactly by the rules defined for UUID as URI fragment
identifier (including prefix, described above). For all entities created with UUID as a part of URI –

defaultRdsId value will be the same as fragment identifier.

5.2. New template

A new template can be added to any data source.

To add a base template click the data source name root node and press
Shift+Ins or use Edit – Add template menu command. A form will appear

allowing to enter template name, to fill Comment field (description and/or
axiom) and enter an URI (optionally).

Additional annotation properties and specializations can be added to the

template in the same way they are added to other reference data items:
by pressing Ins on a Properties node or by dropping superclass on this
node and selecting subClassOf object property.

Pressing Del deletes the template. It is impossible delete a template if there are templates

specialized from it. The Editor will ask you whether you want to delete all specialized templates
together with parent template.

5.3. New specialized template

To create a specialized template click a parent template and press
Shift+Ins or use Edit – Add template menu command. Specialized

templates can be created only in the same data source with parent!

In the form for specialized template the same fields as for a new

template can be filled. Additional annotation properties and
specializations can be added to the template in the same way they
are added to other reference data items.

5.4. New template role

New template is created without roles (with the exception of specialized templates who inherit
parent roles). Pressing Ins on Roles node of a template brings up a form to create a new role.

Role label and description can be entered, together with URI (optionally).

Roles in different templates but with the same label will get the same URI (human-readable or not).

It will be impossible to assign different labels to such roles later.

New template role is always created with xsd:string type restriction. You can change restriction

later using XML Schema types, 15926-2 types or RDL entity (see below).

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 46

When you add a new role to a parent template or delete the role –
the change is applied to all templates specialized from it. When you

add a new role to a specialized template or delete a role – this
change is applied to its parent template and propagated to all
templates specialized from it. Thus it is impossible to change

number of roles of specialized template compared to parent.

Pressing Del deletes the template role.

5.5. Role editing

The role name can be edited in the role property grid.

Role order (index) is determined by the sequence of roles in the

tree. Role order can be changed by rearranging roles with mouse
dragging.

When you edit a role name or rearrange role order the change is propagated from parent template
to all templates specialized from it; and from specialized template to its parent template and then

to all templates specialized from it. Thus it is impossible to change role names or role order of
specialized template compared to parent.

Role name change is also propagated to all templates which use the same role (the OWL property

with the same URI).

To change restriction of a template role open Part 2, XML Schema data source or any reference
and project data source in a new panel, drag the required type or entity and drop it on a template
role. Restriction of the role will change.

If restriction by value is required, change Restricted by value field in the property grid of a role to

True. Restriction by value is marked by the "=" sign in the role description.

Restriction changes do not propagate from specialized templates to parent or back. You have to
ensure that role restriction for a specialised template (by value or not by value) meet the restriction

of a corresponding role of a parent template. Published version of the Editor does not enforce this
rule during editing and does not do this type of verification yet.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 47

5.6. New data entity

To create a new instance of Part 2 type open a Part 2 data source next to the panel with edited

data source. Drag the required type and drop it on the root node of the edited data source. A form
will appear indicating the Part 2 type and allowing entering the name of a new entity and URI –
both optional. An entity without a name can be assigned identification later by adding label

property, other annotation property, or in some other way allowed by ISO 15926 (relationship or
template instance).

To create a new template instance open a view on a data
source with template definition next to the panel with edited

data source. Drag the required template and drop it on the
root node of the edited data source. A form will appear
indicating the template type and allowing entering the name

of a new instance and URI – both optional. Template
instances aren't usually assigned proper names.

All template roles are mandatory for template instance, and

there are mandatory roles for some instances of relational
Part 2 types. When an instance with mandatory role is

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 48

created – a sign will appear at the Properties node group indicating that mandatory roles are

missing. The names of missing roles can be seen if mouse pointer is hovering over this node.

Relational type instances are created without roles (object properties), except roles restricted by

value in the instances of specialized templates and literal template roles. Roles restricted by value
in the instances of specialized templates are filled with restricting values in place. Literal template
roles are created with empty string values. Therefore they are not marked as missing at the time

of creation, although their values are not properly defined yet.

Please refer to the next section for role filling.

A type of an entity (Part 2 type or type of a template instance) can be changed by dropping new
type (Part 2 or template definition respectively) on the rdf:type node in Properties node group of

the entity. This can lead to exotic constructs (classes of individuals with relationship or template
roles, relationships or templates with wrong role names, etc.) so the editor will try to determine
wrong roles and warn you about them.

Object roles defined for Part 2 entity types can appear only for instances of corresponding types, if
they are met for instances of some other type they'll be marked with error sign. Template roles
used for other template instances will be marked with warning sign only. Refer to Data verification

section for more details.

Pressing Del deletes the entity.

5.7. Filling the object property (role)

To fill an object property (role) of a relational entity (instance of a relationship, of a class of
relationship or template instance) drag the entity you need in a role to Properties node of a

relational entity.

A role occupier can come from the same data source or from any other reference and project data
source present in the project, file or endpoint. The link and cross-navigation possibility will remain

in place as long as both data sources
remain in the project.

After the drop a form will appear to choose
object property (role name) from those

available for the type of edited relational
entity: roles for relationships or for classes
of relationship, template roles, rdf:type and

custom object properties.

If you are creating and filling a new role, be
careful to drop an entity on a Properties

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 49

grouping node itself, not on one of existing object property nodes in the group! An entity dropped
on the existing property can change the role occupier.

Notice that rdf:type and all object properties registered as Roles (custom object properties) in the

project properties and in the properties of a data source are added to the list of available object
properties. If properties with the same short name but with different URIs are defined for project
and for data source – URI defined for the data source will be used.

Custom object properties and rdf:type will appear even if an entity is dropped to Properties node

of a non-relational entity. This feature allows to use rdf:type object property to represent
classification relationship between data entities or use rdfs:subClassOf property to represent

specializations. This is allowed by Part 8 but rarely used now. It is also possible to use custom
object properties to record other relationships in a non-reified way.

It is possible to add second Part 2 type to an entity or create multiple instances of the same role in
a relational entity, The Editor will mark duplicate roles as errors. The Editor will mark the
Properties group with an error if a mandatory role is missing.

Instances of specialized templates with object roles restricted by value are created with
corresponding role already filled with proper entity, but it is possible to change this role occupier

later. Please avoid such changes. The Editor will mark specialized template instance roles with
wrong values as errors. Refer to Data verification section for more details.

Pressing Del deletes the object property role.

5.8. Adding literal or annotation property

Some Part 2 type instances may possess literal properties (for example, Cardinality instances
may have literals hasMaximumCardinality and hasMinimumCardinality, instances of six subtypes
of ClassOfExpressInformationRepresentation may have hasContent literal property). Template

instances can also possess roles with literal values, to be filled with numbers, strings, dates and
times, etc. (for example, template BeginningOfTemporalPart has role valStartTime restricted by
type xsd:dateTime, template CardinalityEnd1MinMax has roles valMaximumCardinality and
valMinimumCardinality restricted by type xsd:double).

Template instances are created with literal roles already in place but with empty value. The value
can be added in a property grid of an instance or
of a role itself.

Annotation properties may be added directly to
Properties node group of all Part 2 type

instances and all template instances of a data

source. To add literal or annotation properties to
an entity click its Properties grouping node and
press Ins or execute Edit – Insert new item menu

command. The form will appear allowing to
choose required property and set its value. The
list of available properties is formed from the

following sources:

- set of annotations defined for the project
(to extend this set refer to the project
properties description);

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 50

- set of annotations defined for the data source, (to extend this set refer to the Annotations
in data source property grid description);

- literal properties defined for a type of entity edited (literal roles for some Part 2 types and

literal roles for templates) – look to the end of the list to see these.

No type control for values assigned is provided by the Editor. The Editor will control only whether
mandatory roles are filled or not and mark as mistakes missing mandatory roles (on the Properties

node) and duplicate literal properties (but not annotations).

You can edit existing literal and annotation property value in a property grid of an entity or of a
property (white fields in a Properties panel allow editing).

Pressing Del deletes the property.

5.9. Cut, copy and paste data

It is possible to move data between data sources with Copy (Ctrl+C), Cut (Ctrl+X) and Paste
(Ctrl+V) commands available from Edit menu, context menu, or via keyboard shortcuts. As ISO

15926 RDF data sources are not text files, this set of common commands is augmented with
Copy text (Ctrl+Shift+C) and Paste as triples (Ctrl+Shift+V) commands. Selection of available

commands is context-aware and their execution is subject to some restrictions, as described
below.

5.9.1. Data selection

You can select a single entity, an individual property, or several entities and/or properties. Multiple
selections are done with mouse clicks while simultaneously holding Shift or Ctrl key.

Selection of a grouping node Properties is equivalent to the selection of corresponding entity.

Grouping nodes Relationships or Patterns can be included in group selection, but Copy and Cut

commands have no effect on them (except Copy text).

You can also select a search result grouping node in a data tree containing several entities. Copy
and Cut commands will be applied to all entities in such a group.

For a template definition any selection of templates and/or roles is possible, but available
commands will depend on the selection made.

5.9.2. Data copying

You can Copy entities or properties in any reference and project data source (local or endpoint).

You can Copy whole template definitions (not roles) in any data source (local or endpoint). Be

careful while copying specialized templates – correct paste to other data source is possible only if
parent template is also copied to new data source.

You can Cut entities or properties in any local reference and project data source.

You can Cut whole template definitions (not roles) in any local data source. You can not Cut a

template definition without deletion of all templates specialized from it. The Editor will ask you for
confirmation. If confirmed – all specialized templates will be just deleted, only parent

template will be placed in the clipboard!

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 51

When you execute Copy or Cut commands RDF data (one triple, several triples or complex

template subgraphs) for selected entities or properties are placed in the Editor’s clipboard.

Notification with the number of triples copied appears and is stored in Console history area.

Additionally URIs for all selected entities (subjects in all copied triples) are placed in a standard
Windows clipboard.

For any selection of entities, properties and groups special command Copy text (Ctrl+Shift+C) is

available (standard Copy may be disabled for a group of diverse elements). Copy text command

copies visible text of selected tree nodes to a standard Windows clipboard. Tree structure is
preserved with Tab symbols. This command is useful for written communication about data

entities.

5.9.3. Data pasting

To use Paste from menu just move focus to the required data source. To Paste something from

context menu right-click anywhere on a data source view. It doesn't matter whether you click a
tree element or an empty space. You can Paste entities or template definitions only to a local data

source. Be careful while pasting specialized templates – correct paste is possible only if parent
template is also available in a new data source.

It is possible that you are pasting to a data source some data about entities which are already
present in it (there are triples with the same subjects in both data source and Editor’s clipboard).
There are two Paste commands in the Editor with different behavior in this situation.

Regular Paste (Ctrl+V) command will assume that you are moving new entity to a data source in

its entirety. Therefore it will ask you whether you want to overwrite existing information about this
entity. If confirmed, all information in the data source about an entity will be replaced with new
information (all existing triples with this subject will be deleted and replaced with triples from the

clipboard). If you are pasting many entities you will be offered this choice for each entity or you
can confirm some choice for all further requests.

If you really want to augment existing information, use Paste as triples (Ctrl+Shift+V) command. It

will add unconditionally all triples with the existing subject and any new predicate. If triples with the
same subject and predicate (but different objects) are found in the data source and in the Editor’s
clipboard (if such property for this entity already exists with another value), the Editor will offer you

a choice:

 to replace an old value with a new value;

 to add new value in addition to the old (some properties can have multiple values);

 to keep an old value and skip pasted data.

If you are pasting many entities you will be offered this choice for each triple or you can confirm

some choice for all further requests.

Data from Windows clipboard can be pasted to other applications or to Console input area (useful
for searches by URI). URI(s) will be pasted if Copy command was previously executed, and text

will be pasted if previous command was Copy as text.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 52

6. Data verification

Data verification for ISO 15926 is a complex issue. There are numerous ontologies which may

impose restrictions on data. Data model for ISO 15926 data as defined by Part 2 is one such
ontology. Each template definition data source defines its own ontology and imposes its
restrictions. Various domain ontologies are distributed among federated reference data libraries.

There are some hopes that uniform OWL representation will allow the use of general-purpose
reasoning algorithms to do the verification. Another approach is to use some query language to
construct verification rules for specific situations. There are attempts to use SPARQL for this task.

.15926 Editor has built-in verification tests with rules implemented using SearchLan – search API

of Scanner module. These rules are based on patterns to abstract from specific data
representations used in ISO 15926 data modelling (reified relationships, RDF predicates,
templates). More on SearchLan and patterns can be found in Volume 2 and Volume 3 of this

documentation.

The set of built-in tests will grow with future releases of the software.

Verification rules are applied in real time as data are added or edited in the data source via

Editor's GUI. Verification of the whole local data source can be executed by Search – Search for
suspicious entities menu command or by console command show(id=wrong). Be aware that
verification of a large data source can take significant time (hours for PCA RDL)! Console

commands allow to do verification for smaller subsets of data, refer to Volume 2 APIs of Scanner
and Builder for details.

You'll probable see more warning messages then errors in your verification results. It is because
of the so called "open world assumption" at the core of ISO 15926 ontology. Under this

assumption many suspicious relationships between entities can not be judged outright false using
only limited knowledge (set of facts available in present data sources). Each warning message
should be investigated carefully.

6.1. Mandatory and optional roles verification

Mandatory and optional roles for relational entities in ISO 15926 data are defined:

- by Part 2 data model for instances of Part 2 entity types;

- by each template definition data source for template instances (in fact all template roles
are mandatory).

The Editor does verification for:

 - missing mandatory roles;

 - duplicate roles;

 - misplaced roles (roles from one data type or template appearing for an instance of

different data type or template).

While restrictions on Part 2 role usage are rather strict, restrictions for template role usage are
more relaxed, and role predicates theoretically can be used not only in the context of templates.
Therefore built-in data verification in the Editor handles misplaces Part 2 and template roles

differently. See the table below for errors/warnings for different situations.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 53

 Missing

mandatory
object role

Misplaced

P2 object
role

Misplaced

template
object role

Missing

mandatory
literal role

Misplaced

P2 literal
role

Misplaced

template
literal role

Instance of
Part 2 type Error Error None Error

Warning
 None

Instance of

template Error Error
Warning

Error Error
Warning

6.2. Typing and classification verification

In ISO 15926 data an entity may be declared as belonging to some class in a number of ways. An

rdf:type predicate and instance of Classification type are only the top of the iceberg. A number
of templates can be used to declare classification, classification can be inferred from a chain jf
specialization relationships which in turn may be declared in a number of ways.

To collect as much statement about classification as possible, we are using patterns Classification
and Specialization defined in the Editor's pattern libraries. The Editor is distributed with a set of
example patterns which includes the most used ways to express there relations. Other pattern
libraries which we will distribute may expand this set, including expansion of Classification and

Specialization patterns. Refer to Volume 4. Patterns and Mapping for more details.

The set of classifiers for an entity is determined as all classes which form Classification pattern
with this entity (as classifiers) and all classes which form Specialization pattern with them (as

superclasses)

Current version of the Editor doesn't test whether this set of Classifications is non-contradictory!

We are starting the set of typing and classification tests in the Editor from verification of typing for
relational entities – instances of relational Part 2 types and instances of templates.

Each relational Part 2 type and each template has role restrictions – roles can be restricted with
Part 2 types for Part 2 types and base templates, and with classes for specialized templates. For
all entities filling the role in an instance of a relational type or in a template instance the role

restriction is checked against classifier set determined as described above.

If role restriction is found among the classifiers of an entity – verification test is passed.

If role restriction is disjoint with one of the classifiers of an entity – verification test fails and role
icon is marked with error sign (a message explaining an error is displayed if mouse pointer is

hovering over a role). Notice that explicit disjoint statements are available only for data model
types.

In all other cases appears a warning sign.

6.3. Role value verification

Specialized templates may have roles restricted by value. No other entity can appear in such a
role. The Editor will show an error sign if a role restricted by value is occupied by an entity
different from the one defined in the template.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 54

7. Walkthrough guides

7.1. Part 4

Part 4 file is a representation of Part 4 tables in a legacy RDF format and can be downloaded from

http://rds.posccaesar.org/2009/08/OWL/ISO-15926-4_2007. It can be added to the Editor
environment by selecting File – Add file(s)… – Part 4 file… menu command (you can register this
file via menu File – Settings, Paths tab). If opened in this way, the data source is loaded with

customized set of annotation properties. Select the data source Part 4 in Project panel and open it
in a new data panel (F10).

You can navigate through the file which has 9566 named entities. You can load them all with an
empty search in the search box or look there for “pump”. Navigation allows you to move between

data sources. Try selecting the Part 2 type of any entity (rdf:type in Properties node group) and
press F12.

Original ISO 15926-4 was distributed in the form of .xls spreadsheets corresponding to data

modeling and design domains, the spreadsheet names can be found at the page
http://rds.posccaesar.org/2008/05/XML/ISO-15926-4_2007/ . You can search for items from a
particular spreadsheet with a SearchLan console query for annotation property spreadsheet

structured as in the following example:

show(spreadsheet=('http://www.tc184-sc4.org/ts/15926/-4/ed-
1/tech/rdl/electrical.xls'))

Notice that Part 4 entities from this dataset are not included in the PCA RDL, Part 4 data is

reproduced there with numerous changes and additions.

7.2. PCA RDL

Details about PCA reference data library and services can be found at
https://www.posccaesar.org/wiki/Rds .

Endpoint content is available for download from http://rds.posccaesar.org/downloads/PCA-
RDL.owl.zip (the file is sometimes updated, use the newest version available). Download and
unzip the file, and register the path to it through File-Settings menu command (Paths tab, PCA

RDL (RDL.owl) field). Add the data source via File – Add file(s)…– PCA RDL file… menu

command. The file is relatively big (more then 57 000 entities, almost 3 mil. triples), so you will see
loading progress. You can continue work with the program while big datasets are loaded. Open

the data source in a new panel when loading is complete.

Type "celsius" in the search box and press Enter. Explore properties of entities found. Selecting

entity node in the tree you can see its properties in the Property panel.

Now you can go to File-Add SPARQL endpoint… menu and chose PCA RDL endpoint.

Search for "celsius" again. You will see the same reference data entities in online version of PCA

RDL. You can press F6 for items from local file or from an endpoint and see dereferenced URI in

your web browser.

Open Relationships node group for any entity from an endpoint and find a relationship with a

question mark icon. PCA RDL contains references to the old RDS/WIP reference data library (now
retired), as RDS/WIP URIs are used in many legacy data sets and mappings. These references

http://rds.posccaesar.org/2009/08/OWL/ISO-15926-4_2007
http://rds.posccaesar.org/2008/05/XML/ISO-15926-4_2007/
https://www.posccaesar.org/wiki/Rds
http://rds.posccaesar.org/downloads/PCA-RDL.owl.zip
http://rds.posccaesar.org/downloads/PCA-RDL.owl.zip

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 55

are represented through the use of special RDF predicate
http://posccaesar.org/rdl/rdsWipEquivalent. Such representation has no semantic meaning under

ISO 15926 modeling conventions and is not compliant with ISO 15926-8 rules for RDF/OWL
representation.

7.3. Looking for unrecognized entities

Sometimes exploring a data source in .15926 Editor you meet an unrecognized entity in a
relational entity role, in a template role, or as a value of some object property (probable also

unrecognized). Unrecognized entity looks like an icon with question mark "?" followed by URI or
by a role/relation name and URI. URIs in the tree are usually prefixed by namespace aliases not
easily recognizable. Click on the entity node and look at the property grid to see a full URI.

To study examples described below – make sure that Project panel is empty and add
reference and project data file sample_lookup.rdf from <samples>\ folder. Open it and do
an Empty search (hit Enter in the search box). Expand found instances of

ClassOfAssemblyOfIndividual and of Specialization to see unrecognized role occupiers
in them.

Look whether you can recognize data sources in which these entities may be found. Look for
unrecognized entities at endpoints or just load local copies of RDLs. Then try to reload (F5)

unrecognized entity.

In our example both unrecognized entities in roles of assembly1 instance are in the
namespace http://posccaesar.org/rdl/ indicating that they are from PCA RDL and you can

look it up in local export file or on an endpoint.

First add PCA endpoint to the project via File-Add SPARQL endpoint…- PCA RDL, right-
click hasClassOfPart role and choose Search endpoints for URI command (F4). Found item

will appear as a separate view under PCA RDL SPARQL node in a Project panel. Reload
(F5) assembly1 entity. One role occupier is recognized.

The second role occupier we can identify via the same search, or we can find it in local
copy of PCA RDL. Remove endpoint from the project and use File-Add file(s)…–PCA RDL

file… menu command. No search is required as items from local source are linked in the
project immediately. Just reload (F5) assembly1 entity and see both role occupiers. You
can click on them and press F12 to explore these entities in their native data source.

Check whether unrecognized entity has an URI looking like a legacy RDS/WIP URI:
http://rdl.rdlfacade.org/data# namespace and fragment identifier starting with R and followed by
numbers or UUID (called "R-number"), for example http://rdl.rdlfacade.org/data#R60717709462).

To identify an entity behind such URI try Search – Search PCA endpoint for WIP equivalent (F7 or

corresponding toolbar button) menu command. It will open PCA endpoint and search it for an
equivalent class recorded there by special relationship rdsWipEquivalent. Search results are

added as a new data view for PCA endpoint data source in Project panel.

In our example click hasSuperclass role in specialization1 instance. It is occupied by
http://rdl.rdlfacade.org/data#R35802804974. Hit F7 button. See PCA RDL endpoint and

one new view for it appearing in Project panel. Open new view and look at the found entity
PHYSICAL OBJECT. You can find in its Relationships group the following relationship to
the URI we were searching:

hasWipEquivalent for http://rdl.rdlfacade.org/data#R35802804974

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 56

Even if search for WIP equivalent is successful – the entity will remain unrecognized in your data
source, as equivalence is recorded in PCA endpoint in a way which has no semantic meaning

under ISO 15926 conventions. You can edit your data source – drag newly found entity and drop it
on the property with unrecognized URI. After that you can save snapshot of an endpoint and keep
the snapshot file in your project. If you prefer to use endpoint data, you can next time find
unrecognized entity (with new URI!) through Edit – Search endpoints for URI (F4 or toolbar button)

menu command described below.

Drag PHYSICAL OBJECT from endpoint panel and drop it on hasSuperclass role in
specialization1 instance.

Be aware that many URIs in RDS/WIP namespace were issued for various proprietary datasets
and project sandboxes, and were never registered in RDS/WIP RDL. Such entities of course have
no equivalence relationship recorded in PCA RDL. One other place to look for such entities in

iRING sandbox at http://www.iringsandbox.org/repositories/SandboxPt8/query . You can add it to
your project via File-Add SPARQL endpoint…- iRING Sandbox menu command.

If your unrecognized entity has some other URI, or an equivalent for WIP-looking URI was not
discovered in PCA RDL or iRING sandbox, you can try search on other endpoints. Add all

endpoints you want to search to the Project panel.

When all required endpoints are added to Project panel, click an unrecognized URI and use Edit –
Search endpoints for URI (F4 or corresponding toolbar button) menu command. Search results

are added as new data views for each SPARQL data source in Project panel. If you have found
required URI - reload (F5) an entity with unrecognized property.

Search for RDS/WIP equivalent (F7 button) will not deliver any results for an entity

occupying hasSublass role in specialization1 instance. Add iRING Sandbox to the project
as described above, click hasSublass role in specialization1 instance and press F4. Reload
specialization1 instance (F5).

Remember that when you restart the Editor next time, the search of external endpoints will not be

repeated. You can save snapshots of required endpoints and add local files to your project, and
then all linked reference data will be reloaded after the restart.

7.4. Exploring endpoints

Open IIP Sandbox (templates) from File – Add SPARQL endpoint… menu. Press All

templates from data source button on the toolbar and look at roles of identified specialized
templates. You will see many roles restricted by unrecognized entities in the namespace
http://rdl.rdlfacade.org/data# . This is legacy namespace of RDS/WIP reference data library.

Today RDS/WIP reference data library URIs are preserved as values of rdsWipEquivalent

predicate in PCA RDL.

The same namespace was used also in a number of other sandboxes, including iRING Sandbox
(http://www.iringsandbox.org/repositories/SandboxPt8/query) which keeps reference data for IIP

team (at some point in the future its content will be moved to PCA RDL).

Add PCA RDL and iRING Sandbox endpoints to your project via File – Add SPARQL endpoint…
menu. Click on any restricted role and try pressing F7 (Search PCA endpoint for WIP

equivalent) and F4 (Search endpoints for URI) buttons. You will see some URIs found at PCA
RDL (equivalent classes in http://posccaesar.org/rdl/ will appear as search results) and some

URIs found at iRING Sandbox.

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 57

You may find that some URIs are found in PCA RDL but without any meaningful data for them,
and some URIs which will not be found anywhere. These are problems in reference data to be

corrected in the future.

7.5. Organizing a project

Now let's go through building of a data project from several sources.

We'll use example piping system data prepared by Hans Teijgeler, one of the authors of ISO
15926 (see his personal website at http://www.15926.info/). Description of methodology used in

preparation of this example can be found at http://www.15926.org/publications/general-
discussions/pid-take-off/index.htm. Original files of the example can be downloaded from the page.

Example data uses template instances of the template set

http://15926.org/15926_template_specs.php . This template set is developed by Hans Teijgeler
and is currently reviewed by Special Interest Group Modeling, Methods and Technology of POSC
Caesar Association. For use in the Editor environment templates can be downloaded from
http://15926.org/15926_template_specs.php?mode=owl.

The process below is described for files downloaded at the moment of preparation of this guide.
The data at http://15926.org/15926_template_specs.php is work in progress and can be
changed, augmented (and unfortunately sometimes corrupted) as data modelling goes on.

Templates are edited and corrected, and sometimes changes affect namespaces and encoding
rules also.

To ensure compatibility with .15926 Editor patterns one version of this set is included with the
distribution as templates.owl file in folder <samples>\pid . If newer version in downloaded file

looks or behaves differently – check for changes (especially in namespaces), or contacts us for
help.

Start a new project (press Ctrl+Shift+N) and add template definition file to it. Drop templates.owl

file on the Project panel.

Assign a module name to template definitions: click at the project node in Project panel, then find
the field Modules in the Properties panel and click on it. Enter the key mmttpl and choose

templates.owl from a dropdown menu.

Add a project reference data library file xyz-corp-rdl-extension.owl and open it in a data panel.
Empty search in a search box will return 59 entities in the data tree. After expanding any entity's

Properties group you'll find that identification of entities is done through annUniqueName

annotation property.

Do the query show(type = mmttpl.any). Three properly recognized template instances are
returned, showing that template instances are indeed inked to template definition data source.

opening them you'll see some missing roles and some missing entities in other roles indicating
that the work on reference data is not completed.

It is also noticeable that this data source uses owl:Class declaration for all entities, which do not

add any ISO 15926 specific semantic to the data. Also rdfs:subClassOf proprerty is used to record

specialization relationship, which does not violate Part 8 requirements.

It is possible to find PCA RDL data for entities discovered in the project RDL. In local reference
data you can find links to URIs of unrecognised entities in http://rdl.rdlfacade.org/data#

namespace (marked with "?"). With the retirement of RDS/WIP reference data library only PCA

http://www.15926.info/
http://www.15926.org/publications/general-discussions/pid-take-off/index.htm
http://www.15926.org/publications/general-discussions/pid-take-off/index.htm
http://15926.org/15926_template_specs.php
http://15926.org/15926_template_specs.php?mode=owl
http://15926.org/15926_template_specs.php

.15926 Editor v1.4 Volume 1. Getting Started TechInvestLab.ru

 58

RDLand some sandboxes contain cross-references to these old URIs. Click an unrecognised URI
and press F7 button or use corresponding toolbar button. Special data view will be created with a

result of PCA endpoint query for this URI. You can check the class and if necessary – drag it to
the unrecognised property and update your reference data with new URI.

Now add the project data file pid-take-off.owl to the Editor. Do console queries:

show(type = part2.any.Thing)

show(type = mmttpl.any)

There are plenty of unnamed data entities, but query through search box reveals nothing. Look at
any of 53 classes, expand Patterns node group and see that the new principle of identification is

used here – entities are assigned identification through ClassifiedIdentificationOfClass template

instance.

Query

show(type=mmttpl.ClassifiedIdentificationOfClass, valIdentifier=groupby,
hasIdentified=out)

The list of identifiers comes out (each preceded with "grouped by" prefix) but entities behind them
remain unrecognized – meaning that their modeling is still incomplete.

However you can see that template ClassifiedIdentificationOfClass has a hasUrClass role,

meaning that each unrecognized class is a class created for partial OIM definition, and has a
superclass representing the "true" piping system element, as described at
http://www.15926.org/publications/general-discussions/class-model/index.htm . This allows us to

form a query:

show(type = mmttpl.ClassifiedIdentificationOfClass, valIdentifier=groupby,
hasUrClass=out)

and see the list of identifiers with entities available for exploration behind them

Through the Patterns node group you can now explore connections of entities in the model at

UrClass level.

Notice that data is often incomplete, with some entities missing from the model. However links
from project data to local reference data are recognized and can be navigated by F12 button.

If you want to add entities to a data source – do not forget to set proper namespace for new
entities (property grid of the data source is available when you click tree data tree root node). If
you are owner of the data in the data source – you can use the namespace of existing entities. If

you are going to enhance data prepared by others – use your own namespace for data you create.

You can organize and study another project from template set and data file found in <samples>\iip

folder. This template set is a set used in iRING Tools, and data file is taken from Oil & Gas

Interoperability (OGI) Phase 1 Pilot project guided by MIMOSA
(http://iringug.org/wiki/index.php?title=GS_OGIDemo_001). The data file is an export from Bentley
OpenPlant P&ID software.

http://www.15926.org/publications/general-discussions/class-model/index.htm
http://iringug.org/wiki/index.php?title=GS_OGIDemo_001

	License
	1. Introduction
	2. Installing and running the program
	3. Glossary
	4. User interface
	4.1. Interface overview
	4.2. Keyboard shortcut list
	4.3. Main menu
	File
	Project…
	Edit
	Search
	View
	Data types
	Import
	Help

	4.4. Toolbar
	4.5. Project panel
	4.6. Project properties
	4.7. Data panels
	4.8. Properties panel
	4.9. Console
	4.9.1. REPL Environment
	4.9.2. Console interface
	4.9.3. Console scripting
	4.9.4. Example scripts

	4.10. Status bar
	4.11. Data view
	4.11.1. Filter/Search box
	Search in names
	Search in URIs

	4.11.2. Data tree
	4.11.3. Data tree overview
	XML Schema type
	Part 2 type
	Reference and project data source
	Data entity
	Property of a data entity
	Template definition entity
	Template role
	Grouping node

	4.12. Diff view
	4.12.1. Comparing data sources
	4.12.2. Diff panel tools
	4.12.3. Reviewing changes
	4.12.4. Accepting changes
	4.12.5. Filtering diff view
	4.12.6. Saving the diff
	4.12.7. Applying the diff

	5. Data editing
	5.1. URI and UUID generation
	5.2. New template
	5.3. New specialized template
	5.4. New template role
	5.5. Role editing
	5.6. New data entity
	5.7. Filling the object property (role)
	5.8. Adding literal or annotation property
	5.9. Cut, copy and paste data
	5.9.1. Data selection
	5.9.2. Data copying
	5.9.3. Data pasting

	6. Data verification
	6.1. Mandatory and optional roles verification
	6.2. Typing and classification verification
	6.3. Role value verification

	7. Walkthrough guides
	7.1. Part 4
	7.2. PCA RDL
	7.3. Looking for unrecognized entities
	7.4. Exploring endpoints
	7.5. Organizing a project

