

.15926 Editor

Version 1.4

Volume 3

Extensions

Welcome to the .15926 Editor. This free software is distributed by TechInvestLab.ru “as is” without
any warranties or obligations, for testing purposes. Use it and enjoy at your own risk. Please send

bug reports, usage and licensing questions or suggestions to dot15926@gmail.com .

February 23, 2013

mailto:dot15926@gmail.com

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 2

Volume 3. Extensions

Contents

License ... 3
10. Extensions .. 4

10.1. Introduction to extensions ... 4

10.2. Registering and enabling an extension .. 4
10.3. Extension menus... 5
10.4. Accessing internal data structures and methods ... 6

10.4.1. ISO 15926 data .. 6
10.4.3. Data processing ... 7

10.5. Defining new data views ... 8

11. Built-in extensions .. 10
11.1. TabLan import ... 10
11.2. Catalog data model import.. 11

11.3. IIP template table import .. 12
11.4. Template table import ... 12
11.5. Spreadsheet mapper .. 12

Appendix A. Catalog Export Specification and Mapping .. 13
A.1. Data model export specification ... 13
A.2. Sample JSON reply .. 14

A.3. ISO 15926 mapping for catalog data model .. 15
a. Prerequisites ... 15
b. Attribute processing .. 16

c. Class structure processing ... 17
d. Russian name processing .. 18

Other documentation volumes:

Volume 1. Getting Started
Volume 2. APIs: Scanner and Builder
Volume 4. Patterns and Mapping

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 3

License

Parts of .15926 Editor (built-in extensions and extension samples) are released as a source code
under the BSD 2-Clause license.

Copyright 2012 TechInvestLab.ru dot15926@gmail.com

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions

and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Other parts of the software (released in binary and in text form) are not covered by the

license above and are distributed "as is" and free of charge for evaluation purposes only!

Elephant icon by Martin Berube is used for .15926 software according to terms at

http://www.iconarchive.com/show/animal-icons-by-martin-berube/elephant-icon.html

mailto:dot15926@gmail.com
http://www.iconarchive.com/show/animal-icons-by-martin-berube/elephant-icon.html

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 4

10. Extensions

10.1. Introduction to extensions

Functionality of the .15926 Editor can be enhanced through the use of extensions. Extensions are external
Python modules loaded by the Editor and available through Editor's menus. No installation of Python on a
user computer is required; the Editor itself compiles and executes Python code.

With .15926 Editor extensions you can:

● Access ISO 15926-2 data model, reference data ontologies, and particular data elements specified
by the standard (namespaces, roles, annotations, etc.).

● Use various Python libraries or APIs to access and process external data sources of any type (files,
databases, web services, etc.).

● Add new or existing ISO 15926 data sources (local files or endpoints) to your project.

● Create new data in local data sources.

● Process ISO 15926 data combining Platform component's methods, external Python libraries and
any other functionality available in Python code via API calls or similar methods.

● Add new types of data sources and define views and editing modes for them.

Extensions can access data structures and methods of .15926 Platform components included in the Editor.
API functions of Scanner and Builder components are documented in Volume 2. APIs: Scanner and
Builder. Some useful data structures and methods are listed beloq; others can be discovered through the
study of open-source extensions and extension examples available in the <installation_folder>/extensions
folder and in its subfolders.

Please use help() to access Python help utility in the console of the Editor. At help> prompt you can get
lists of modules, their data structures, classes and methods (degree of component documentation varies).

Extension development requires basic (and probable, better) Python knowledge. Knowledge of PySide GUI
toolkit will be a great benefit if really complex behavior of extension is required. Nevertheless simple
extension code can be developed and debugged directly in the Python console of the Editor, and
registered as an extension following guidelines below and using examples included in the distribution as
templates.

Please contact TechInvestLab.ru for help in extension development.

10.2. Registering and enabling an extension

Extensions are placed in the <installation_folder>/extensions
folder of the installation or in its subfolders. Extension can be a
single Python file or a whole Python module. Remember that
module must be initialized in __init__.py file.

The Editor automatically recognizes all extensions in extensions
folder and lists them on the Extensions tab in the Settings form
available through File-Settings menu command. To enable an
extension check its checkbox, and restart the Editor. Extension
will be compiled and menu commands defined in the extension
will be added to Editor's menus.

Opening Settings form of the newly installed Editor you will find
extensions developed by TechInvestLab.ru. For details about
extensions catalog, tablan and iringtempl see Built-in
extensions. Extensions importbase and excel_reader are

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 5

required but may be disabled, as they are used as libraries by other extensions.

Extension examples is not enabled. You can enable it and study functionality of sample extensions placed
in the <installation_folder>/extensions/examples folder.

If you have changed built-in extensions, please backup extension files before new version
installation – an installer will overwrite them!

Some Python libraries are included in the Editor at compilation. If you need to import new external modules
to your extension, the Editor may have troubles locating them. You can either copy all required libraries to
the <installation_folder>, or add paths to them on the Paths tab in the Settings form as comma separated
list.

You can change source code of any enabled extension and recompile it without closing the Editor. Save
your changes to extension files and use File-Reload modules ((Ctrl+Shift+R) menu command.

10.3. Extension menus

To add a new menu item to main menu bar of the Editor declare new class with
public('workbench.menubar') decorator.

Class attributes:

 vis_label: Text label of new menu item in menu bar.

 menu_content: Path to sub-items.

 position: Index of item position in main menu, from 10 to 100.

Sample:

@public('workbench.menubar')
class xTextMenu:
 vis_label = 'Example menu'
 menu_content = 'dot15926.menu.textmenu'
 position = 10

To add a sub-item to an item declare new class with public('<menu_content>') decorator, where
<menu_content> is path to menu sub-item defined in menu item class.

Class attributes:

 vis_label: Text label of new menu sub-item.

Class methods:

 Update(cls, action): Update callback of QAction, passed as 'action' argument.

 Do(cls): Action required on menu click.

Sample:

@public('dot15926.menu.textmenu')
class xTextMenuItem:
 vis_label = 'Open text file...'
 @classmethod
 def Update(cls, action):
 action.setEnabled(True)

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 6

 @classmethod
 def Do(cls):
 path = framework.dialogs.SelectFiles('Open text file...')
 if not path:

 return
 doc = TextDoc()
 doc.OpenFiles([path])
 appdata.project.AddDocument(doc)

More examples can be found in extensions/example/*_menu.py files.

10.4. Accessing internal data structures and methods

10.4.1. ISO 15926 data

Important ISO 15926 data structures (Part 2 data model, standard namespaces, annotation sets for PCA
RDL and Part 8, and more) and some external data model elements (XML Schema) are encoded as
Python lists and dictionaries in Platform's module iso15926.kb.

You can bring this module in the console environment with

import iso15926.kb as kb

command and use help(kb) to list its content, then use print(…) to study individual data structures.

10.4.2. New data source

Standard ISO 15926-8 data graph is implemented in the Platform by iso15926.GraphDocument class.

To create new reference and project data document create GraphDocument instance:

document = GraphDocument()

Define parameters for new document, including name, module_name, chosen_part2, namespaces,
annotations (all corresponding to data source properties described above in Data source section):

param = dict(module_name='new_data', chosen_part2=kb.ns_dm_part2,
namespaces=kb.namespaces_std_meta,
annotations=kb.annotations_rdfs+kb.annotations_meta)

To create a new file for the document call NewFile() method:

document.NewFile(path, **param)

To use document from existing file call OpenFiles() method:

document.OpenFiles([path], **param)

If you want to import data from an external data source via import mapping defined in your importer class –
prepare your target document by NewImport() method (you'll be able to use File-Reimport menu
command then) :

document.NewImport(path, ImporterType, **param)

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 7

where arguments are:

 path: Path to source file for import.

 ImporterType: Importer class.

To add a document to Project panel call appdata.project.AddDocument() method:

appdata.project.AddDocument(document)

If data source is correctly created the Editor will support all standard functionality available for it (save with
new name, save as, change tracking, undo\redo. etc.).

10.4.3. Data processing

External libraries

To get data from external data sources you may need a specialized Python libraries (there are plenty to
parse HTML, XML, JSON, make SQL or SPARQL queries, access web services of call other APIs, etc.,
etc.). You can import external Python libraries for use in your extension (do not forget to add paths to them
on the Paths tab in the Settings form).

Platform components

.15926 Platform components are developed to process ISO 15926 data. The set of components available
to the extension is defined by the work environment. There are two ways to get work environment – get
environment directly or use EnvironmentContext instance.

The first way is to get work environment directly – by calling GetWorkEnvironment() method of
appdata.environment_manager.

Example:

env = appdata.environment_manager.GetWorkEnvironment(document,
include_builder=True, include_scanner=True, include_patterns=False)

Method arguments:

 document: Target document, all components in the environment will work with it.

 include_builder: Builder is available for specified document if True.

 include_scanner: Scanner is available for specified document if True.

 include_patterns: Patterns are processed for specified document if True.

When work environment is obtained, you can access available tools using tool name or module name as a
key (environment is a dictionary, you can check its keys with dir(env) command). Notice that all data
sources present in the Project are included in the environment and are available with module names as
keys.

For example, after the execution of the following code:

builder = env.get('builder', None)
part2 = env.get('part2', None)

p7tpl = env.get('p7tpl', None)

standard functionality of Builder and Scanner becomes available in your extension with API function's
syntax documented in respective sections of this documentation.

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 8

For example, the following will work:

part2.ClassOfRelationship()

builder.annotate(id = class_id, annSource=source)

p7tpl.ClassOfArrangementOfIndividual(item, whole)

You can learn more about access to environment and its use by analyzing importer.py files found in catalog
and tablan extension folders.

The second way to get work environment is to use EnvironmentContext instance for execution of Python
code. It allows you to execute Python string or Python file in an environment replicating the one used in the
Editor's console, different only by local variable set. In this way you can develop and debug your Python
code in the console and later use this code as a base for registered extension available from menu.

To create EnvironmentContext instance call:

context = EnvironmentContext(document, locals)

 If specific document is required as environment target - pass it to the constructor as a first
argument. Passing None as a first argument initializes environment with active view or active
document as a target.

 If some local variables have to be passes to main extension code from console-developed code –
pass the dictionary locals to the constructor as a second argument. After the execution of console-
developed code values of local variables become available in this dictionary with variables as keys.
For example:

locals = {}

context = EnvironmentContext(None, locals)

context.ExecutePythonString('a = find(type=part2.Class)')

print locals['a']

When console-replicating environment is created, you can run console-developed code using
ExecutePythonString() or ExecutePythonFile() method.

For method ExecutePythonString() see example above.

ExecutePythonFile() method requires path to the file with console-developed code as an argument.

You can learn more about usage of EnvironmentContext for building extensions from console-developed
code by analyzing transformation_main.py and transformation_commands.py files found in examples
extension folder.

10.5. Defining new data views

Extensions allow you to define new types of data sources and define custom views for them. You can
include texts or pictures in the Editor panels, and even make them editable.

In the extension examples simple view and edit functionality is implemented for a text file. If this extension
is enabled, menu command Example menu - Open text file... appears in the Editor. It adds text file as a
data source to the Project panel. This file can be opened in data panel and edited in it. Text will behave like
other data sources – it can be saved, and it will be restored in the project after the Editor restart.

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 9

Menu item for text file opening is defined in text_menu.py file in samples extension.

Creation of text data is handled by text_doc.py file. To create a new text data source declare new class
inherited from framework.Document. The Editor uses document-view architecture and appropriate view
type should be set during document initialization.

Initialization example:

 def __init__(self):
 framework.Document.__init__(self)
 self.viewtype = type('', (TextView,), dict(document=self))
 self.my_text = ''

Opening and saving files occurs through overloaded methods OpenFiles(), Save() and SaveAs(). Other
information about document methods used can be found by help() command. When large files are loading
or saved it is suggested to use worker thread instead of main thread. The example of worker thread use
can be found in text_doc.py.

Documents in the Editor use simple event system to send events. Only two methods are needed:
Subscribe(self, item, subscriber) and Unsubscribe(self, item, subscriber). This event system is stored
as global variable wizard.

Example of event sending:

 wizard.W_TextDocChanged(self)

View class TextView is defined in text_view.py file in samples extension.

Note that one document can be rendered in multiple views. View class should inherit from
framework.View class, which is inherited from QDockWidget. Any PySide element can be added to view.

To subscribe for document events view class uses wizard event system. Example of subscription for
event:

 wizard.Subscribe(self.document, self)

To handle events appropriate methods are defined in view class.

Example of handler for W_TextDocChanged event:

 def W_TextDocChanged(self, doc):
 self.textfield.textChanged.disconnect(self.OnText)
 self.UpdateView()
 self.textfield.textChanged.connect(self.OnText)

Please use help('framework.document') and help('framework.view') console commands to find more
about available methods and interfaces.

Text data source can be accessed from console. Please look at text_con.py file in samples extension.
There a simple command is defined which overwrites the opened file with its string parameter.

For example:

 SetText('New document text')

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 10

11. Built-in extensions

Current version of .15926 Editor is distributed with several open-source extensions developed by

TechInvestLab.ru and with some examples. Source code for these is available in the
<installation_folder>/extensions folder of the distribution and in its subfolders.

The code of built-in extensions and extension prototypes is released under the BSD 2-Clause
License. Other parts of the software (released in binary and in text form) are not covered by

this license.

This section contains short descriptions of released extensions with further references to
appendices or separate documents for detailed information. Notice that TabLan and Catalog

adapters were developed some years ago before the concept of pattern mapping appeared and
became available for data model mapping in the Editor.

Extensions can be turned off or completely removed from the software.

11.1. TabLan import

TabLan import extension facilitates import of data from data tables prepared according to the

TabLan.15926 modelling methodology. TabLan.15926 tables are designed for formalized
information extraction from engineering project technical specification documents.

Using TabLan import you can convert data from TabLan.15926 table (in Office Open XML .xlsx

format) to ISO 15926. Conversion process creates reference data (classes, relationships and
template instances) in Part 8 format, which can be further used to build project RDL to support
data integration in CAD/CAE/PLM environment, organize data in PLM systems or facilitate

requirement’s traceability and verification.

The mapping of TabLan to ISO 15926 data structures is described by a simple Python code in a
special .15926 Platform module using .15926 Builder API.

Full specifications for TabLan.15926 language and data mapping to ISO 15926 can be

downloaded from http://techinvestlab.ru/TabLan or found in the documentation folder of this
installation. Customized set of template definitions, sample TabLan data model in .xslx file and
imported .rdf file can be found in <samples>\tablan folder.

TabLan.15926 is just an example of a
simplified Gellish-like table language
which can be mapped and translated

to ISO 15926 with the help of .15926
Platform tools.

Menu command Import - Setup
TabLan dependencies… - opens form

for TabLan model import settings with
the following fields ((settings are saved

between Editor launches in the dot15926.cfg configuration file in <installation_folder>)):

– location of the file with template definitions for templates used in import mapping;
– location of the file with reference data used in TabLan model;
– namespace for new entities created during import process.

http://techinvestlab.ru/TabLan

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 11

Select file p7tpl_enhanced.owl from folder <samples>\tablan as template definitions. Templates

from the p7tpl_enhanced.owl file are instanced during the conversion. When loaded, template

set is named "Template set (TabLan)" and registered with p7tpl module name (do not change it, or
import will not work).

Select PCA RDL as file with reference data used in TabLan model. TabLan data is linked to PCA
RDL reference data.

Fill in the namespace or leave default namespace in this field.

Then go to Import – Import TabLan reference data from.xslx table… menu and choose TabLan

model Example_One.xlsx file from the same folder. Wait while template set and RDL are loaded.
Do not close RDL or template set data sources until import process ends, or import will fail.

Imported data source is marked with *Imported file:… name in the Project panel. You have to use
Save as… (Ctrl+Shift+S) command to save imported data to a new .rdf file. Or you can change
something in the source table, save it and repeat import with File - Reimport menu command.

You will find unrecognized entities (marked by "?") in some relationships. These are reference
data items from TechInvestLab.ru sandbox. To see them properly add TechInvestLab.ru endpoint
to the Project panel through File – Add SPARQL endpoint… - TechInvestLab Sandbox menu

command. Then you can select any unrecognized entity and use Edit - Search endpoints for URI
(F4) menu command. Or simply open TechInvestLab.ru endpoint in a separate panel and search

for an empty string in the search box at the top of the panel. After all sandbox entities are added to

the view you can reload unrecognized entities in import results.

11.2. Catalog data model import

Catalog import extension facilitates import of reference data from data model of an engineering
catalog application developed by 3V Services (third party software). For more details refer to
Appendix A. Catalog Export Specification and Mapping.

Customized set of template definitions and two sample JSON files with fragments of catalog data
model can be found in <samples>\json folder: ClassificationExample.json and

ClassificationPart.json.

Menu command Import - Setup catalog dependencies… opens form for catalog data import

settings with the following fields ((settings are saved between Editor launches in the dot15926.cfg
configuration file in <installation_folder>)):

– location of the file with template definitions for templates used in import mapping;

– location of the file with reference data used in import mapping;
– namespace for new entities created during import process;
– checkbox to specify whether inherited attributes have to be directly assigned to possessor

classes.

Select file p7tpl_enhanced.owl from <samples>\json
folder as template definitions. Templates from the

p7tpl_enhanced.owl file are instanced during the
conversion. When loaded, template set is named
"Template set (Catalog)" and registered with p7tpl

module name (do not change it, or import will not work).

Select PCA RDL as file with reference data used in

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 12

import. Catalog data is linked to PCA RDL reference data.

Fill in the namespace or leave default namespace in this field.

Check the checkbox if you want to see catalog classes directly linked to attributes they've

inherited from their superclasses.

Go to Import catalog data from JSON file… and select JSON file from in <samples>\json folder.

Wait while template set and RDL are loaded. Do not close RDL or template set data sources until

import process ends, or import will fail.

Imported data source is marked with *Imported file:… name in the Project panel. You have to use
Save as… (Ctrl+Shift+S) command to save imported data to a new .rdf file.

11.3. IIP template table import

IIP template import is a built-in extension for import of template definitions from Excel spreadsheet

used to populate iRING Tools software with templates and reference classes.

An .xslx file with the set of IIP reference data can be found in <samples>\iip folder. The work on

templates is work in progress, this file is the latest version available at the time of Editor release. It
can not be considered more then an example!

Menu command Import - Import IIP templates from xlsx table… opens a dialog to select the

spreadsheet (in .xlsx format) for import.

Imported template definition data source is marked as *Imported file:… name in the Project panel.

You have to use Save as… (Ctrl+Shift+S) command to save imported data to a new .owl file.
Conversion results can be also found as file iip_fullset_20140131.owl in <samples>\iip folder.

11.4. Template table import

Template import is a built-in extension for import of template definitions from the Excel
spreadsheet similar to the previous one. The difference is in the URI handling. While IIP template

table importer uses URIs directly specified in the spreadsheet, this template importer generates
new URIs based on the import settings.

Please contact TechInvestLab.ru if you want to find more details about spreadsheet template

format and conventions used for this importer.

11.5. Spreadsheet mapper

This powerful mapping extension is fully documented in Volume 4. Patterns and Mapping.

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 13

Appendix A. Catalog Export Specification and Mapping

A.1. Data model export specification

Adapter included as extension in the released version of .15926 Editor is designed for the
engineering catalog application developed by 3V Services company (third party software). This

catalog is developed on ENOVIA platform (Dassault Systemes). For more details about
engineering catalog application refer to the developer's web site http://3v-
services.com/ru/index.php?option=com_content&view=article&id=87 (in Russian).

Catalog data model was exported as JSON file from a web-service with method
getClassification(id)

Class structure can be exported from the class id. If id is empty – full class structure from the root

is exported.

Format:

Each class is represented by JSONObject with fields:

- id – internal ENOVIA identifier of a class (string)

- name – Russian class name (string)
- subClasses – subclasses of a class (array)
- attributes – attributes of a class (array)

- id – internal ENOVIA identifier of an atttribute (string)

- name – Russian attribute name (string)
- type – attribute type (string).

 Can have values: "string", "real", "integer", "boolean", "date", "ref"

- unit – system name of UOM (string)

Catalog application supports attribute inheritance along the class structure, but inherited attributes

were not exported.

http://3v-services.com/ru/index.php?option=com_content&view=article&id=87
http://3v-services.com/ru/index.php?option=com_content&view=article&id=87

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 14

A.2. Sample JSON reply

{
 "id": "RECPart",
 "name": "Голова",
 "attributes": [
 {
 "id": "Title",
 "name": "Наименование",
 "type": "string",
 "unit": ""
 },
 {
 "id": "relationship_REC_Protege_supplier_organization",
 "name": "Организация-поставщик",
 "type": "ref",
 "unit": ""
 }
],
 "subClasses": [
 {
 "id": "REC_Protege_Process_Equipment",
 "name": "Технологическое оборудование",
 "attributes": [
 {
 "id": "REC_Protege_pressure_in",
 "name": "Давление на входе клапана",
 "type": "real",
 "unit": "p"
 },
 {
 "id": "REC_Protege_pressure_out",
 "name": "Давление на выходе клапана",
 "type": "real",
 "unit": "p"
 }
],
 "subClasses": [
 {
 "id": "REC_Protege_Heat_transfer_equipment",
 "name": "Теплообменное оборудование",
 "attributes": [],
 "subclasses": []
 },
 {
 "id": "REC_Protege_Material_transfer_equipment",
 "name": "Транспортирующее оборудование",
 "attributes": [],
 "subclasses": []
 }
]
 }
]
}

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 15

A.3. ISO 15926 mapping for catalog data model

This mapping from JSON Catalog data model export format is designed to automate initial stage
of ISO 15926 mapping process for catalog application.

Reference data items created during an automated transformation of data model described below

are not intended to become the final reference data items used for neutral representation of
catalog data in data integration. Automated mapping creates ISO 15926 compliant data model
which is just mirroring original application's data model with a small addition of ontology analysis.

Drastically simplified mapping patterns based on the catalog attribute types are used in this
mapping.

Such computer-generated data model of the original application have to be further reviewed by a

specialist ISO 15926 data modeler, compared to reference data in reference data libraries used
and to common data characterization patterns. To facilitate data exchange a fully functional
mapping complying with recognized mapping methodology (preferably with PCA one, refer to
https://www.posccaesar.org/wiki/FiatechJord for more details) should be created from catalog data

model (whether in original format, or represented by JSON, or as automatically mirrored as
described below).

Automated data model transformation can sufficiently simplify data model analysis and bring the

work to the .15926 Editor environment specifically designed as a data modeler's tool.

a. Prerequisites

a.1. Namespace proj: for new reference data URI – it is specified as transformation parameter.

a.2. PCA reference data library as a local file is used for one reference data entity only:

DATE AND TIME
http://posccaesar.org/rdl/RDS16432820

a.3. Template set used is a standard proto and initial template set enhanced with one additional
template:

PropertyRangeTypeRestrictionOfClass(
 1: hasClass: ClassOfIndividual,
 2: hasRestrictedProperty: ClassOfIndirectProperty,

 3: hasScale: Scale)

With the axiom:

PropertyRangeTypeRestrictionOfClass(x1, x2, x3) <->
EXISTS u EXISTS v

(PropertyRangeMagnitudeRestrictionOfClass(x1, x2, x3, u, v))

a.4. Three additional reference data entities not found in RDL are used:

 CATALOG RUSSIAN IDENTIFICATION : ClassOfClassOfIdentification

 CATALOG ATTRIBUTE TYPE : ClassOfClass
 CATALOG EQUIPMENT CLASS : ClassOfClassOfIndividual

https://www.posccaesar.org/wiki/FiatechJord

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 16

b. Attribute processing

Fields of an attribute in a JSONObject are identified below as:

id: attribute_ENOVIA_id

name: attribute_Russian_name
type: attribute_type
unit: UOM

When a new (judging by the field attribute_ENOVIA_id) attribute is met in the source file the

following entities are created:

b.1. Part 2 type instance:

URI = attribute_URI generated in namespace proj:
label = "attribute_ENOVIA_id"

type = depending on value of attribute_type field:

"string" : ClassOfClassOfIndividual
"real" : ClassOfIndirectProperty

"integer" : EnumeratedPropertySet
"boolean" : ClassOfStatus
"date" : ClassOfRelationshipWithSignature

"ref" : ClassOfClassOfIndividual

b.2. Template instance:

Classification(URI_of_attribute, CATALOG ATTRIBUTE TYPE)

b.3. If attribute processed has attribute_type field with value "date", additional reference data is

created:

b.3.1. RoleAndDomain instance

URI = URI generated in namespace proj:

label = "POSESSOR_OF_ attribute_ENOVIA_id"

type = RoleAndDomain

b.3.2. RoleAndDomain instance

URI = URI generated in namespace proj:

label = "RANGE_OF__ attribute_ENOVIA_id"

type = RoleAndDomain

b.3.3. Roles for the attribute_ENOVIA_id instance of ClassOfRelationshipWithSignature

are assigned:

hasClassOfEnd1 = POSESSOR_OF_ attribute_ENOVIA_id
hasClassOfEnd2 = RANGE_OF_ attribute_ENOVIA_id

b.3.4. Template instance:

Specialization(RANGE_OF_ attribute_ENOVIA_id, DATE AND TIME)

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 17

b.4. If an attribute has non-empty UOM field, the check is performed whether such UOM was met

earlier. If nor, an instance of Scale is created:

URI = URI generated in namespace proj:

label = "UOM"

type = Scale

c. Class structure processing

Fields of a class in a JSONObject are identified below as:

id: class_ENOVIA_id
name: class_Russian_name
type: attribute_type

JSONOblect structure is processed and for each class the following entities are created:

c.1. Part 2 type instance:

URI = attribute_URI generated in namespace proj:
label = "class_ENOVIA_id"

type = ClassOfIndividual

c.2. Template instances:

Instances of Specialization according to the subClasses defined by JSONObject structure

c.4. Template instance:

Classification(class_ENOVIA_id, CATALOG EQUIPMENT CLASS)

c.5. For all attributes of a class depending on the value of attribute_type field the following

reference data is created:

for "string"
ClassOfClassification(class_ENOVIA_id, attribute_ENOVIA_id)

for "real"
PropertyRangeTypeRestrictionOfClass(class_ENOVIA_id, attribute_ENOVIA_id,

UOM)

for "integer"
ClassOfClassification(class_ENOVIA_id, attribute_ENOVIA_id)

for "boolean"
ClassOfClassification(class_ENOVIA_id, attribute_ENOVIA_id)

for "date"
Specialization(class_ENOVIA_id, POSESSOR_OF_ attribute_ENOVIA_id)

for "ref"
ClassOfClassification(class_ENOVIA_id, attribute_ENOVIA_id)

c.6. Optionally at data transformation time attribute inheritance should be processed and for each
class relationships from clause 3.5 above should be established for all its inherited attributes.

.15926 Editor v1.4 Volume 3. Extensions TechInvestLab.ru

 18

d. Russian name processing

If an attribute or a class has non-empty attribute_Russian_name or class_Russian_name field

respectively, the following entities are created:

d.1. Part 2 type instance:

URI = attribute_URI generated in namespace proj:
label = "attribute_Russian_name" or "class_Russian_name "

type = ExpressString

d.2. Part 2 type instance:

URI = attribute_URI generated in namespace proj:
type = ClassOfIdentification

This instance of ClassOfIdentification (URI_identification) has roles defined for attribute or for a

class respectively:

hasRepresented = attribute_ENOVIA_id
hasPattern = attribute_Russian_name

or

hasRepresented = class_ENOVIA_id
hasPattern = class_Russian_name

d.3. Template instance

 Classification(URI_identification, CATALOG RUSSIAN IDENTIFICATION)

	License
	10. Extensions
	10.1. Introduction to extensions
	10.2. Registering and enabling an extension
	10.3. Extension menus
	10.4. Accessing internal data structures and methods
	10.4.1. ISO 15926 data
	10.4.3. Data processing

	10.5. Defining new data views

	11. Built-in extensions
	11.1. TabLan import
	11.2. Catalog data model import
	11.3. IIP template table import
	11.4. Template table import
	11.5. Spreadsheet mapper

	Appendix A. Catalog Export Specification and Mapping
	A.1. Data model export specification
	A.2. Sample JSON reply
	A.3. ISO 15926 mapping for catalog data model
	a. Prerequisites
	b. Attribute processing
	c. Class structure processing
	d. Russian name processing

