15926 Editor

Version 1.5beta
Sample Mapping and Adapter Prototyping
Walk-through Guide

1. Source data

2. Modelling conventions and ProjJeCt SEIUP ..o s 2
3. Preparing RDL from EQUIPMENT TIST........cviiiiicece e 3
4. Defining pattern for ProjeCt RDL.........ciiicice e 4
5. IMPOIING RDL ..ot b bbbt bbbt ne e 5
6. Preparing EQUIPMENT LIST ..o bbb bbb neereens 5
7. Defining pattern for EQUIPIMENT. ..o ens 6
8. IMPOrtiNG EQUIPMIENT.....oiiiiitiiiecieee ettt b ettt bbb 7
9. Preparing CONNECHIVILY TALA........ccoeiiieiiieer ettt 8
10. Defining pattern for CONNECTIVILY.........cccoiiiiiiie e ene s 9
11, IMPOItING CONNECTIVITYuiieiiieieieeee ettt s et be st neene e e 10
12. Removing duplicates and typing MIiSSING ODJECTSccccvviiiiiiiii i 10
13. Exporting and comparing diagraim ..o see e 11
14. Viewing Linked Data pages for the Project ... 12

This document will guide you through the process of data mapping and adapter prototyping
for the sample plant process data using .15926 Editor. To follow it step-by-step you have to
download the Editor from http://techinvestlab.ru/dot15926Editor (this guide is valid for
versions starting from 1.5beta).

Initial data set and all information required to reproduce described transformations are
included in the folder dot15926Editor15beta\samples\ProcessDiagram and its subfolders.
All folder references below are given related to it.

Prototyping process described here depends on the MS Excel data transformation
capabilities. Data are preprocessed in spreadsheets and imported into the 1ISO 15926 RDF
format using the Editor's built-in spreadsheet import. Fully functional adapter independent of
the inherent restrictions of this approach can be implemented at a later stage when mapping
and data transformation are prototyped and debugged.

http://techinvestlab.ru/dot15926Editor

1. Source data

We will be working with a single high-level process diagram. It is prepared with the software
from one of the major engineering software vendors. The data is exported using the
standard export functionality of the tool. Look in \Source folder to see the diagram in PF-
PFB-Plant.pdf file and two spreadsheets with exported data
EquipmentWithBaseObjectAndAttributeHeight.xls and ProcessUnits-Connectors.xls.

2. Modelling conventions and project setup

To make this example short and easily understandable even for novice data modellers we
will keep some major modelling choices very simple or probable oversimplified.

All objects on the diagram will be modeled as individual physical objects. The most rigorous
modeling at the initial stages of the plant lifecycle can require seeing them as classes of
activities.

The model will not include temporal parts of modeled individuals, temporal nature and
temporal boundaries of objects will not be modeled.

The data prepared with such modeling conventions can be used for one-time data exchange
between engineering tools, but can not be used for lifecycle data storage.

According to the choices made above we will use templates for individuals from the IIP
template set (local copy of templates available from http://posccaesar.org/sandbox/p8iwg/)
and [P project Template Information Patterns (project page
http://iringug.org/wiki/index.php?title=1SO_15926_Information_Patterns_%2811P%?29, TIP
Manager http://iringsandbox.org:8080/tip/tipmanager, patterns imported into the Editor from
database backup http://www.iringsandbox.org/bak/tips.mdb).

Of course we will use PCA Reference Data Library (file for local use available from
http://rds.posccaesar.org/downloads/PCA-RDL.owl.zip). Please download the file, unzip it
and register its location in the Editor settings.

Project =) £
& & *DiagramExample

Go to the folder \ProjectData and open project file | 55 piems

DiagramExample.15926 in the Editor. You will see the project | ©'rjoPCARDL

. . -0l iip_fullset_20140131_PCA_dm.owl
composed from the following data sources: & Imported fle tips25062014 patt
~ Bl ExampleRDL.rdf

PCA RDL — POSCCaesar RDL (opened as read-only | & G oo o teems patt

from the Editor settings);

iip_fullset_20140131_PCA_dm.owl — IIP template set (initial set and specialized
templates);

tips25062014.patt — IIP TIPs file;
diag_example_patterns.patt — project-specific patterns;
ExampleRDL.rdf — project-specific reference data library (now empty);
ExampleData.rdf — project data file (now empty).
We will use the following two namespaces: http://data.example.org/rdl/ for project-specific

reference data and http://data.example.org/project/ for project data. You can find them
registered in the Properties of respective data sources.

http://posccaesar.org/sandbox/p8iwg/
http://iringug.org/wiki/index.php?title=ISO_15926_Information_Patterns_%28IIP%29
http://iringsandbox.org:8080/tip/tipmanager
http://www.iringsandbox.org/bak/tips.mdb
http://rds.posccaesar.org/downloads/PCA-RDL.owl.zip
http://data.example.org/rdl/
http://data.example.org/project/

One project specific annotation [[annotatio | llabel http://www.w3.0rg/2000/01/rdf:schema#label

hasLocalld is I’egiStel’ed in the Properties 3 comment http://www.w3.0rg/2000/01/rdf-schema#comment
of the project to record IDs of reference hasCreationDate http://posccaesar.org/rdl/hasCreationDate
data entities and project objects used in hasCreator http://posccaesar.org/rdl/hasCreator

hasLocalld http://data.example.org/properties/haslLocalld

the native application. Other annotation
properties in the project are standard RDF/RDFS properties and properties used in PCA
RDL.

3. Preparing RDL from Equipment list

Looking at exported project data file EquipmentWithBaseObjectAndAttributeHeight.xls
we can see that equipment item types can be derived from Base object column (F) where
some type of internal ID of authoring system is located. Column Decscription (E) allows us to
deduce the names of base objects from the descriptions of project objects.

A B C o E F

1 Unit Marne Height tatal |Label Description Base ohject

2 |=PRO01-PU0Z3=AEQ [FILOOT FILo0T Cartridge Filer @1PE[FO|EQ|0T|FIL

3 |[=PRO0-PU0Z3=AEQ |FILO0Z FlLonz Filters @1PE|POIEQ|DT|FIL

4 |=PRO0T-PUI023=AEQ |Mix001 MIX001 Mixer (@1PE|FPO|EQ|01]MIX
5 |=PRO01-PUDZI=AEQ |PUNMOOT FLUMO0T Fump @1PE[FO[EQ|05[PUK
E |=PRO0I-PU0ZI=AEQ | PUNMIDZ PLUMO0Z Pump (=1 PE|PO|EQ|05[PUR
7 |=PRO0T-PUNDZ3=AEQ |PUKDOG PUMO03 Purnp (@1PE|FO[EQ|05|PUM
& |=PRO01-PUDZI=AEQ [PUNMDDA FLIMO04 Fump @1PE[FO[EQ|05[PUK
9 |=PRO0-PU0Z3=AEQ | PUNMINS PLUMO0S Pump (=1 PE|PO|EQ|05[PUR
10 |=PRO0T-PU023=AEQ |PUKMOIOG PUMODG Purnp (@1PE|FO[EQ|05|PUM
11 |=PRO0T-FUDZ3=AEQ |FUNMOO? FLIMO07 Fump @1PE[FO[EQ|05[PUK
12 |=PRO0-PUDZI=AEQ |PUNMIDE PLMO0G Pump (=1 PE|PO|EQ|05[PUR
13 |=PRO0T-PU023=AEQ |PUKDOY PUMO0Y Purnp (@1PE|FO[EQ|05|PUM
14 |=PRO01-PUDZI=AEQ [PUMDTD FLUMOTO Fump @1PE[FO[EQ|05[PUK
15 =PRO0N-PUDZ3=AEQ [PUNMITI PUMOTT Pump (=1 PE|PO|EQ|05[PUR
16 |=PRO0T-PU0Z3=AEQ |PUKMDT2 PUMO1Z High Pressure Pump (@1PE[PO[EQ|05|PUM
17 =PRO0T-FU0Z3=AEQ |PUNMOT3 PLMOTS Fump (@1PE[FO[EQ|05PUK
18 |=PRO0T-PUDZ3=AEQ |PUNMOT4 PLMOT4 Pump (=1 PE|PO|EQ|05[PUR
19 |=PRO0T-PUDZ3=AEQ |PUKMDTS PUMOTS Purnp (@1PE[PO[EQ|05|PUM
20 |=PRO0T-FU0Z3=AEQ |FPUMOTE FUMOTE Fump (@1PE[FO[EQ|05PUK
21 |=PRO0T-PUDZ3=AEQ |PUMOT7 PLUMOTZ Pump (=1 PE|PO|EQ|05[PUR
22 |=PRO0T-PU0Z3=AEQ |PUNMOTE PUMOTE Purnp (@1PE[PO[EQ|05|PUM
23 |=PRO0T-FUDZ3=AEQ |FUNMOTY FLMOTS Fump (@1PE[FO[EQ|05PUK
24 |=PRO0-PUDZI=AEQ |PUNMDZ0 PLUMOZ0 Booster Pumpe (=1 PE|PO|EQ|05[PUR
25 |=PRO0T-PU023=AEQ |vALOOT WALDDT Arrmature (@1PE[PO|EQ|0BvAL
26 =PRO0-FU0Z3=AEQ [VALDOZ WALDDZ Armature @1PE[FO[EQ0E[vAL
27 =PRON-PU0Z3=AEQ |WALDDS WALOD4 Armature (@1 PE|PO|EQ|0B[AL

Only 8 base objects with different IDs are used in this file:

Description Local ID

Filter @1PE|PO|EQI|O1|FIL

Mixer @1PE|POIEQ|01|MIX
Vessel, vertical @1PE|POI|EQI|03|VES|VESO01
Vessel, horizontal @1PE|POIEQI|03|VES|VES02
Tank, vertical @1PE|PO|EQI|03|VES|VESO03
Tank @1PE|PO|EQI|03|VES|VES04
Pump @1PE|PO|EQI|05|PUM
Armature @1PE|POI|EQ|06|VAL

We'll record them to the project-specific reference data library and link them to appropriate
PCA RDL reference data classes. To do this we prepare a spreadsheet and import it using
the Editor spreadsheet adapter. Go to the folder \ForImport and open ProjectRD.xls file.

A B © D E F G H T
FOL UFRI Description EIIs] Ty PCARDL UF PCARDL Superclass_|Date Creator
il ate example argrdlf | hiip:/data.example. org/rdlf1 PES Filter E|POIEQI|FIL Ihtip:fjrds pos ceaesar.org OIS 0-16926-2_2003#ClassOfin{hip 7jposceaesarorgfrd/RDS 300688 |FILTER 27/ A vagr
ip://clete,example.org/r Mixer PE|PCIEG|01 M, Ihttp:/jrds. pos ceaesar.org/2008/02/0WL/S0-15926-2_2003#CiassOfin{hite //poscoaesarary/rd/FDS306449|FLUID MIKER 1271 A vwagr
ata.exam ple. Oro/ VESVEST|Vessel vertical PE|PC|EG|03|VESVESD[ntp:/jrds pros ceassar.or/2008/02/0WLIS0-15926-2_2003#ClassOfin{hita /poscoassar.aryrd/RDS438839 | VERTICAL VESSEL /271 AM[vwvagr
ta. o Q03VESVES0dVessel harzontal PE|PC|EG|03|VESVESOEhtp://rds po: 1/2008/02/0WL/150-15926-2_2003#ClassOfin{hitp #/posc: o/dl/FD5437354_|HORIZONTAL VESSEL | 2/27/ AM[wvagr
QD3VESVES0 Tank verical PE|PO|EG|03[VESVESTHhtp 10/2006/02/0WL/50-15926-2_2003#Class0) rd/RDS445139 | TAl J27]1 AM[vvagr
CD3VESVES04Tank PE|PO|EC|03[VESVESD4 bt 10/2006/02/0VWL/S0-15926-2_2003#ClassOf rd/FDS445139 | TAN /271 A vagr
FOECOEFUM Pump PE|FO|EC|0E[PUM I I OWLAS0-16426-2_2003#Class O] rd/RDS327238_|FUMF. 271 A vagr
POEQIEVAL Armature PE|POIEGI0E[VAL tp: 10/ 2008/02/0WLIS0-15926-2_2003#ClassOf vol/RDS262589 | VALVE 27/ A vagr
Pracess Stream tp:/jrds pos caeser.0r/2008/02/0WLIS0-15926-2_2003#ClassO) D5 13026796 [STREAM 1271 A vwagr
PFB et puos o 0rg/2008/02/0WLISC-15926-2_2003#Class0f rcl/ROS13026796 [STREAM /271 AM[wvagr

Column A contains project RDL namespace we will use to form URIs for new entities.
We will use unique IDs (fragment IDs) for reference data entities built from their internal IDs

— this will allow us to use Base object field in the exported spreadsheet to determine the type
of the object using only Excel data processing. Obviously it will be better to use UUID

3

generator to guarantee global uniqueness of fragment IDs. When spreadsheet adapter is
prototyped and debugged, UUID generation can be implemented in a dedicated adapter
code free from restrictions of the Editor's built-in spreadsheet import.

Column B contains Excel formula designed to remove all symbols not allowed in URI from
Local ID and concatenate resulting fragment ID with the namespace:

=SUBSTITUTE(SUBSTITUTE(CONCATENATE(A$2;D2);"[";"™);"@";""")

We preserve Description and Local ID in columns C and D to import them as annotation
properties.

Column E contains Part 2 type of the RD entity.

Column F contains URI of PCA RDL superclass and column G contains its name for easy
reference.

Columns H and | contain metadata we'll use in our project RDL — for the demonstration
purposes we'll import only the date of entity creation and ID of the creator.

4. Defining pattern for project RDL

To import RDL spreadsheet content into the project reference data library we need a pattern
which will describe the structure of the spreadsheet. Open diag_example_patterns.patt
(project-specific pattern data source) in the Editor, find RD_Registration pattern and fully
unfold all its nodes.

= [& RD_Registration

The pattern has a signature that corresponds to the columns of “'“’i’j%';anﬁge

the imported spreadsheet. A single mapping to templates and ...ocrl-;eator

- - - - - fe) 1 t
properties (hamed simple) is defined for this pattern. ___Ofrgjfioni date

-2 local_id

< P2Type

It maps local_id, P2Type and name to the appropriate - superclass

annotation and object properties of an object (double click each 2 ;mgl_e .
-[2 objec

mapping node to see property used). & jocal_id->hasLocalld
~< P2Type->type
—==< - name->label
- = &< entity1:Specialization
- I)Iocalld IRole - object->hasSubclass
hasLocalld ~|value -4 type->Specialization
| © P2Type->type - superclass->hasSuperclass
< name->label = [@ object

~© creator->hasCreator

The pattern also describes one additional Specialization entity & [entity1
H i iali H i ~© creator->hasCreator
entityl (an instance of Part 2 Specialization type) which < creation. date-shasCreationDate

~ < creation_date->hasCreationDate

describes relation between new entity and its PCA RDL
superclass. We will create project RDL using Part 2 type instances, according to the current
PCA RDL modelling rules.

The pattern contains two more parts, assigning our metadata properties to the same entities
object and entityl. Separate parts are required to allow repeated imports of the same
spreadsheet, please refer to the documentation for more detail on the work of the Editor's
built-in spreadsheet import.

5. Importing RDL

Select sheet |ProjectRD.><Is-RDL Data

Check that ProjectRD.xls file is open
in Excel on your computer and
ExampleRDL panel is an active panel
in the Editor. Call pattern import
extension (Build patterns from MS
Excel in Extensions menu).

Select pattern |RD_Registration.simpIe

| Roles Columns
P2Type |Type
creation ... |Date
creator Creator
local_id |Local ID
name Description
7| object URL
superclass |[PCA RDL Superclass URI

Select sheet RDL Data and load
mapping rd_mapping.json from
\Scripts folder. = Correspondence T T—

between pattern roles described : :
i Load mapplngl Save mapplngl -Impmt Close
above and spreadsheet columns is

established. The check mark at the object role indicates that entity in this role should be

created with URI recorded in the corresponding column (all other URIs for new entities will
be generated by the Editor). 50 * ExampleRDL.rdf

= 5 Having " in names: (10)

. . =00 Armature : ClassOflnanimatePhysicalObject
Import data. Sometimes the adapter will return an 5 5 Properties (5)

error code in the console indicating problems with < hasCreationDate = "02/27/14 00:00:00"

= hasCreator = "vvagr”

Excel ODBC connection. Please make sure that < hasLocalld = "@1PE|PO|EQ|06|VAL"

the cell selected in the spreadsheet is an empty B e ClaneohanimatePhysicalobject

cell out of the range of data prepared for import. 7 O Patterns (3)
=0 is identified by (1)
- 5o "Armature”
Check the content of the ExampleRDL. Look also =Oissubclassof (1) o
. . &[0 VALVE : ClassOflnanimatePhysicalObject

at the spreadsheet. It now contains URIs of all 5 3 is classified by (1)
entities created during the import (to the right of =0 ClassOflnanimatePhysicalObject

. . . =0 Filter : ClassOfInanimatePhysicalObject
the main data block), which allows incremental > 0 Mixer : ClassOffnanimatePhysicalObject
import — you can add more entities to it and

o [0 PFB : ClassOfArrangedIndividual
repeat the process.

Lelielielialicheled Jiedie]

[Me]u]s]wM]e

[Process Stream : ClassOfArrangedIndividual

O Pump : ClassOfInanimatePhysicalObject

[0 Tank : ClassOflnanimatePhysicalObject

o [0 Tank, vertical : ClassOfInanimatePhysicalObject

¢ [Vessel, horizontal : ClassOfInanimatePhysicalObject
o[Vessel, vertical : ClassOflnanimatePhysicalObject

6. Preparing Equipment list

FES T o - O - - T - N W -

Now we will prepare for import an exported project data file
EquipmentWithBaseObjectAndAttributeHeight.xls. We have to record URIs for entities
and preprocess information about the one property we have.

Go to the folder \ForImport and open Equipment_for_Import.xIs file.

We will again use internal IDs as unique IDs (fragment IDs) in project data item URIs — this
will allow us to connect to the second project export file at the next stage. Again it will be
better to use UUID generator to guarantee global uniqueness of fragment IDs, and UUID
generation can be implemented at a later stage in an adapter which is not dependant on
standard Excel capabilities or on the built-in spreadsheet adapter

A B © I D E F G H 1 J K L M
RDL ney Unit |EquipmentD [URI Name _|Height total [Height| Label n Perentobject Pavent URI Date |Creato
hitp/ice orgird -PRO0T-PUD23=AEQ | -PRO01-PU023-VES028| it /fdats. example. org/projectiid=PRODT-PU023-VES 026 |VESOZE [2000_ mm (2000 |VES028 W 1 PE|POIEQIO3VE SIVESDT [p:/fdata.example.org/iol/ PEFOEQISVESVESDT | 27-Feb-14|wagr
-PRO0T-PUD23-AED | -PRO01-PUI23-VES02? | Wi, date. example. org/praje cid=PRODT-PUOZ-VES 027 |VESDE7 VES027 |Vessel, harizantal TPE|POJED|T3VE SIVESDZ | i fdata.example.org/clf PEPOE QU3VESVESHZ | 27-Fek-14|wagr
Project n PRI =AEQ | -PRO01-PUTZ3-VES026| it /data. e clic-PRODI-PUOZ3-VES 126 |VESUZE VES026 |Flocculation Chamber |@1PE|FO[EQ|0VESIVEST] |ht/data. example. org/rdl1PEPOEQDIVESVE 7-Feb-14|wagr
itp /it exemple crg/project =PRI =PRO01-PU025VES0ZE| ity /dat e ctid=PRODI-PUN23-VES 176 [VES0Z6 [2000 mm _[7000 |VES025 |Hypochiorite Tank PEIFO[EQ|D3[VES[VESD1 |hit/date.examp EPOEQUSVESVEST | 27-Fah-14|wagr
PR R001-PU023-VES024] it e cYicl=PRODT-PUOZI-VES 124 [VEST2d VES024 |COZ Tank PEIPO|EQ|D3[VES[VESTT |t /dlata. examp EPOEQ3VESVESDT | 27-Feh-14]wagr
PR RO01-PLI023-VES023 it d ol e otid-PRODT-PU023-VES023 [VES23 VES023 [Lime Mixing Tank PEIPOIEQ|03[VESIVESD1 bt /date. exarmp EPQEQQ3VESVESHT [27-Fel
PR PR -PUI23VES022] ity /dat U023VES022 [VES022 (3000 mm [3000_|VES022 [Lime Silo PEIPGIEQ|D3VESIVESD1 |hit /date. exarmp EPOEQUAVESVESHT| 274
PR =PRO01-PUIZ3VES0Z |t /dat U023-VES021 [VESD21 [3500 mm 3500 |VES021 [Drinking Water Tank |1 PE|POJEQ|ISVE SIVESD [t:/fdate. exampl EPOEQSVESVESH] 27+
=PRI =PRO01-PU0Z3-VES020] tp/dat PRODT-PU023-VES020 [VESOZ0 [3800_mm (3300 |VES020 |Desalinated Water Tarl@1 PEFO[EQ|03[VES[VES04 |t /date. examp EPOEQSVESVESH| 27+
PR RO01-PU023-VESOT 9] it e ot PRODT-PUOZ3-VESDT9 [VESD1a [1700 mm_[1700 |VESOT Tank PE[PO|EQ|D3[VES[VES04 |t /et examp EPOEQI3VESVESH| 27
PR R001-PLI023-VES016] it PRO0T-PU023-VES018 [VESOIE [1700 mm [1700 |VESQ18 [Reactive Tank PEIPOIEQ|03[VESIVESD1 bt /date. exarmp EPQEQQ3VESVESHT | 27
PR R01-PL023"VESOT B[it ot U023-VES016 [VESOT VES(16 |Dispersant PEIPCIEQ|D3VESIVESD3 |hit /date. exarmpl EPOEQUAVESVESH3| 274
=PR =PRO01-PUIZ3VESO15] it /dat U023-VES015 [VESDTS [1700 mm [1700 |VESO15 |Sulfuric Acid Tank PEIPO[EQ|D3[VES[VES01 |hitp. /date. examp EPOEQSVESVESHT | 27+
=PRO0T =PR001-PU0Z3-VESQ1 3|t/ e ctid=PRODI-PUD23-VES 113 [VESOT VESO13 |Caustic Soda PEIFO[EQ|D3[VES[VESD1 |hit/dlate. examp EFOEQSVESVESHT | 27+
=PRI =PRO01-PU023VESTIZ |t =PRO01-PUB2 3VESTT2 [VESOT2 [1700 mm_[1700 |VESOI2 [Tank verical @1 PE|PO[EQ[I3VES[VES0T |hip:/fd ata.exampl EPOEQ3VESVESH3| 27
-PRODT -PRODT-PU023-VESQT1 |t /dat -PRO0T-PUDZ3VESTT1 [VESQT VESQ11 |Dilution Tank |@1PE|POIEQI03VESIVESD? [htp:/fdate, exampl EPQEQQ3VESVESNZ| 27
PR PR -PUT23VES010] bty /dat U023VES0T0 [VESOTD [1600 mm [1500 |VESO1D [Dilution WWater Tank _|@1PE|POIEQ|ISVE SIVESD? [ht:/fdate. exampl EPOEQUSVESVESDZ [27-F
-PRODT =PRO01-PUIZ3VES00S] it /dat U023-VES009 [VESO0S [VES003 |Collection Surmp |@1PEIPOIEQID3IVE SIVES02 |htip:/fdota.exampl EPOEQISVESVE: 7F
=PRO0T =PR001-PU023-VESO0S| tp/dat e ctid=PRODI-PU023-VES 008 [VESO0A [1500_mm _[1600 |VESO0S [wash Water Tank __|@1PE|PO[EQ|D3VES[VES04 | it /date. examp EFOEQSVESVESNA| 27+
=PRI ~PRO01-PU023VESO07 hty/dat =PRO0I-PUN2 3VESID |VESOD? r \VESO07 [Vessel vertical @1 PE|PO[EQ[I3VES[VESOT |hip:/fdata.exampl EPOEQ3VESVESHT | 27+
=PRI =PR001-PU02 3 VE SO0 hifp/dat e cificl=PR001-PUOZ3-VES 106 [VESODE (2800 mm _[2300 |VESOOG [Tank, vericel |@1PE|POIEQ|T3VES[VESD3 |hip:/fdate exampl EPOEQI3VESVESH3| 27
PRI PR -PU123VES00S] ity /dat U023-VES005 |VESODS VESO05 |Fertic Chioride Tank |@1PE|PGIEQ|IAVESIVESD] |hty /date. exarmpl EPOEQUSVESVESHE| 274
-PRODT =PRO01-PU0Z3VESQ04] it/ U023-VES004 [VES004 [3000_mm [3000_|VES004 [Sea Water Tank |1 PE|POJEQ|ISVESIVESDA [ti:/fdate exampl EPOEQSVESVESN| 27+
=PRO0T =PR001-PU0Z3-VESOO3] tp/dat e ctid=PRODI-FU023-VES 103 [VESODS VESO03 |Beach Wells @1PE|PO[EQIOVE SVEST3 [htp://dats exampl EFOEQSVESVESN3 | 27+
PR =PRO01-PUI23VESOD | htyo/dat =PRO0I-PUB2 3VESON [VESOOT [1200_mm_[1200 |VESOD] [Hypachlarite Tank PE[PO[EQ|03[VES[VES03 |t fdlata. examp EPOEQI3VESVESH3] 27
PR =PR001-PUT23-VAL0BS | ht/dat PRODT-PUD23-VALDEE |VALIEE VALDBS |Amature PE[PO[EQ[B[VAL i fdate. exampl EPOEQUEVAL 7
PR PR -PUTZ3VALIE? |ty /dat U023VALDE? |VALDE? VALDE? [Amature PEIPCIEQ[B[VAL i /fdate, exampl EPOEQUEVAL 7
PR EQ [=PRO0T-PU023-VALNE6 [t 7d ot U023-VALDBE |VALDEE VALOBS |Amature PEIPO[EQ[DB[vAL tp/fdate, exampl EPOEQDEVAL 7
=PRINT-PLIN?3=AF0 [=PRINT-PLINZ3-VAI N8R [hto /At IN?3-VAINAR VAl NRR VAl NRR |Armatire PEIPOIFQINANAL o i ata pxamnl FROFONRVAI -

Column A contains project RDL and project data namespaces to form URIs for entities.

We will construct Equipment IDs in column C using Unit ID (column B) and equipment label
(column H) using Excel formula:

=CONCATENATE(LEFT(B2;12);"-"";H2)
The same schema is used for equipment IDs in the second project export file.

Equipment IDs we will use to form equipment URIs in column D by concatenating them with
project namespace and prefix "id" using formula:

=CONCATENATE($A%$5; "id"; C2)

To classify project data items we'll reconstruct project RDL URIs in column K from parent
object IDs in column J. The schema used to build these URIs is the one used in project RDL
import:

=SUBSTITUTE(SUBSTITUTE(CONCATENATE(A$2;J2);"|";""");"@"";""")

To import the Height attribute we have to separate value from the UOM. It is done by the
Excel formula:

=IF(ISBLANK(F2); ""; (LEFT(F2;FIND(""mm';F2)-4)))

This formula accounts for the fact that not all items have an attribute recorded, and we have
lo leave blank cells blank.

As all UOMs are the same (millimetres) we will not put them in a separate column, just
record them in the mapping.

Columns L and M contain the same metadata we've used in the project RDL.

7. Defining pattern for Equipment.

To import equipment spreadsheet content into the project data source we need a pattern
which will describe the structure of the spreadsheet. Open the panel with the
diag_example_patterns.patt again (project-specific pattern data source), find
Equipment_with_Height pattern and fully unfold all its nodes.

The pattern has a signature that corresponds to the columns of the imported spreadsheet.
One single mapping to templates and properties is defined for this pattern. It is named
prop_and_iiptpl to reflect the fact that it contains mapping to properties and to the templates
from IIP template set.

=@ diag_example_patterns.patt [5/5]
=@ Connection
=i Connection_via_Ports
22 &% Equipment with Heig
=& Signature
~O name
~< height_mm
~< object
~< parent_type
~< creation_date
~< |ocal_id
~< creator
~< description
=@ prop_and_iiptpl
#-& MM=MILLIMETRE
=7 object
-o |ocal_id->haslLocalld
< parent_type->type
-2 description->comment
~© name->label
=& patterns.EstimatedHeight.lifted
- MM->EstimatedHeightUoM
< object->Possessor
- [type->patterns.EstimatedHeight.lifted
< height_mm->EstimatedHeightValue
=-[2] object
o creator->hasCreator
- o creation_date->hasCreationDate

[EnclosureMaterial

= [& EngineeringWorkPackageDescription

= [& EngineeringWorkPackageNumber

=& EnquiryID

= & EquipmentDrawingNumber

= [EquipmentProtectionLevel

=& EquipmentSubType

=@ EquipmentType

= [& EstimatedHeight

E o S|gnature

o EstimatedHeightUoM

- < EstimatedHeightValue

= Possessor

=@ lifted

B v entity1: IndirectPropertyScaleReal
~[EstimatedHeightValue->valValue
0 Possessor->hasPossessor

< EstimatedHeightUoM->hasScale
% type->IndirectPropertyScaleReal
& IND0089->hasType

= [INDO089=http://rdl.rdIfacade.org/data#R87554583009
= [EstimatedLength

= [@ EstimatedWeight

= [@ EstimatedWidth

= [FabricationCategory

[

[+

[+

+ & FacilityDescription
+ & FacilityName
+[& FacilityNumber

It maps three roles local_id, comment and name to the
appropriate annotation properties of an object and also maps
a parent_type role to the rdf:itype property (this role of the
pattern should be occupied by an URI of parent object).

object
< local_id->hasLocalld

parent_type

typel
< description->comment
= name->label

Role
Value

|

[|

We'll not assign Part 2 types to the entities in the project data, using their classifiers from
project RDL instead. It is difficult to add Part 2 types to the big project data spreadsheet
manually, but very easy to do it after the import by inferring appropriate types from RDL

classifiers, if required.

To map the Height property we'll use EstimatedHeight TIP from imported database of the
TIP Manager. To do it we create a part MM which contains millimetre UOM (all RD entities to
be referred in patterns require separate parts in the pattern description).

The next part corresponds to the EstimatedHeight TIP with MM part occupying the
EstimatedHeightUoM role, oblect mapped to the Possessor role and height value mapped to

the EstimatedHeightValue role.

The pattern also contains the separate part assigning to the same object our metadata

properties.

8. Importing Equipment

Check that
Equipment_for_Import.xls file is
open on your computer and

ExampleData panel is an active panel
in the Editor. Call pattern import
extension (Build patterns from MS
Excel in Extensions menu).

Select sheet |Eqipment_for_Import.xIs-Data
Select pattern |Equipment_with_Height.prop_and_iiptpl

Roles Columns

creation...

Date

creator Creator

descripti... |Description

height_... |Height

local_id |EquipmentID

name Name

I object Equipment URI

Q|| (U | W (N

[| I I [[| [

parent_t... |Parent URI

Ready for import

Load mappingl Save mapping

Import | Close

7

Select sheet Data and load mapping
equipment_height.json from \Scripts folder.
=3 Having " in names: (131)

Correspondence between pattern roles described =0 FILOO1 : Filter

above and spreadsheet columns is established. The @ Properties (6) dge Filter
check mark at the object role indicates that entity in - hasCreationDate = "02/27/14 00:00:00"
this role should be created with URI recorded in the | S hasCreator = vvagr
corresponding column (all other URIs for new entities

& haslocalld = "=PR001-PU023-FIL001"
< label = "FILOO1"
will be generated by the Editor).

O type = Filter : ClassOfinanimatePhysicalObject
2 5 Patterns (3)
O FILO02 : Filter
=0 MIX001 : Mixer
-+ Properties (6)

< comment = "Mixer"”

< hasCreationDate = "02/27/14 00:00:00"

- hasCreator = "vvagr"

= hasLocalld = "=PR001-PU023-MIX001"

= label = "MIX001"

O type = Mixer : ClassOflnanimatePhysicalObject
=3 Patterns (3)
= PUMOO1 : Pump
=0 PUMO02 : Pump
=0 PUMOO03 : Pump
=0 PUMO004 : Pump
=0 PUMOOS : Pump
= PUMOO06 : Pump
[
[
[
[
[

#

Import data and check the content of the

ExampleData.

=[O PUMOO7 : Pump
= PUMOOS8 : Pump
+ 0 PUMO09 : Pump
+ 0 PUMO10 : Pump
+ 0 PUMO11 : Pump

9. Preparing Connectivity data

Now we will prepare for import a second exported project data file ProcessUnits-
Connectors.xls.

. . “ . A B c D E F
Looking at the file we can notice several important Susctoeme Nems Label [Name [Labs! [Object owner
=PRO01-PUO23-PS058 o] o1 11 I =PRO01-FPU023-PS003
points: 07 TN U e S 0
=PRO01-PU023-PS06? 9]} o1 I n =PR001-PU023-PS004
=PRO01-PUDZ3-VALDTS n il o1 o1 =PRO01-PU023-PS004
1. Equipment items are identified by internal IDS e o Tor T [i — Lrrioit s
1 . =PRO01-PUDZEVALDT4 n n o1 o1 =PR001-PU0E3-PS009
weve already learned to reconstruct durlng =PRODI-PUNZ3/ESDS 01 o1 _[1__ [|-PROBI-PUNZ3-PS009
. . =PRO01-PUO23-PS055 01 01 001 001 |=PRO0T-PUDZ3-PS011
equipment import. 070 T N [N 2
2. Th biects. identified PS d ~FRONT-PUZ PUMIINE 51 or i | |-PRusi-PUnzEesai
* ere are more o JeC S’ I en I Ie as an =PRO01-PUDZ3-VALODS n n o1 o1 =PRO01-PU023-PS013
PFB, representing process streams omeirtift—itr—(o |t o=
connecting equipment items on the diagram =m0 jor for e e ne o
or leading to other equipment beyond this e for ot i —eroen = oo
d|ag|’am TWO more entltles Should be added =PRO01-PUIZ3VESDO? o0z ooz o1 o1 =PRO01-FPUDZ3-PS019SEGT
. =PRO01-PUDZ3-PUMING 1)] 11 il =PRO01-PU023-P5030
to the project RDL to classify such objects in S 0 e (> T G0
. . =PRO01-PUZ3-VESDO3 o0z ooz o1 o1 =PRO01-FPU023-PS032
the project data (they were already added in =Zigmoaue v i g
our f”e) ~PROTI PUDZ3 PUMO0Z o1 o1 i il ~PRODI PUIZI PS03
3. Connection of objects is recorded via ports. Some ports have identifiers with letters O
or 1, signifying that they are either output or input ports. We should create such ports
in the project data as separate entities then.
4. Each connection is recorded twice — from A to B and from B to A. It is very difficult to

clean this out is Excel, so we'll deal with it later.

Let's prepare these data for Go to the folder

Connections_for_Import.xls file.

import. \Forimport and open

Gl D F

[

Project namespace OBjecicmner (sl [Poa2URl [Name!
i et vermpie crgforeri |=PROIT-PULZ3 PEB A1 mwwma.@ 0 FODT-PUDZ3 PFS @1 ~Tfhip ra/projectid=PROVT-PUOZS 513701 ot

~FED1-EUI23 Fr Jic=ER01-FU023 6 41101

El

FRDI1-FU0ZIE5 14211

=FEDI1-FUI23 PP

fprojecyid=PRODI-PLINZ I PFB 412~ {hry
= -FLIZ3 FFE 4137

g/
[/projecyid=PRODIFUI "

-FROIT-FULZ3 FF
~FRODT-FULZ3 FY

rojectic-}
gy prcjecyid-]

projectid=PROL1-PU0Z 3251 415E
ROD1-PUDZ3E5147~01

FU0ZIES

[

SEG]
1SEGHT

4
. 0rg/projectid-

FURIFSIS
D

35EG

HEEEEEEEER

4d-PRODT-PLI
&.0rg/prajectid-PRACT-

~FEDI1-EUI23 Fr

PR U123 FF
ROD1-FPUIZ 3P

l2.0rg/projocyid=FRIDI-

]
PU0Z3F3066 01

076~01

j e o
p{fdata sxample o1y
T o

~FROIT-PUIZE PF

-PRODT

PUDZ3PS1 00701

5
~FRDT-FUI23 P PU0Z3PFE A TI[h

yid-FRODT

N]

12 &xam ple. Grg/projeclic

=EEDI-FUI2 3

P2 3-FIL0T 0 [h

ZhE
FROD

PU0Z3 PS03~ 11
FUOZE5088 1
PU023PS 101

o {/doln example org
e example

=P
aple O projec G-

PRO0T
R0

U023-FS207~01
U023Fa117°1

2ot xample org/projs
e o

=PEDN-PUI2EF

=FRND

102325175701 |C

i
<FUDE DT

~FRD-FUIZME00T b

FRDDT

U023F51 50701

=PRDIT-FUIZSMIX00T__|hapijfdats example

3ALD01 ~Cfftpfdate sxamg

FRODT

U0Z3FS151711

Column A contains project data namespace to form URIs for entities

We"ll use IDs for the connected objects (columns B and K) to form object URIs in columns C
and J, using the same concatenation Excel formula we've used before.

We also need some schema to construct URIs for new port objects. To do it we'll
concatenate object (port owner) URIs with "~" symbol and with port Label from column E or |

and write port URIs to columns F and G:
=CONCATENATE(C2;"~";E2)

=CONCATENATE(@J2;"~";12)

UUID generation can be used at a later stage when the adapter is tested and implemented

as a separate code.
Columns L and M contain the same metadata as before.

10. Defining pattern for Connectivity

To import connectivity spreadsheet content into the
project data source we need a pattern which will describe
the structure of the spreadsheet. Open the panel with the
diag_example_patterns.patt again (project-specific
pattern data source), find Connection_via_Ports pattern
and fully unfold all its nodes.

Click on pattern nodes to see the way template parts are
connected together.

The pattern has a signature that corresponds to the
columns of the imported spreadsheet. One single
mapping to templates and properties is defined for this
pattern. It is named iiptpl to reflect the fact that it contains
mapping to the templates from IIP template set.

Two objects of the PORT type are described in the
pattern; they'll be created in the data source for each

E

=]

=3

=[] Connection_via_Ports

« Signature

-2 portl_name
= creator

O side2

< creation_date

- Eortzfname
D

-2 port2

< sidel

@ iiptpl

20 port1:PORT

~o portl_name->label

-0 type->PORT

-0 port2: PORT

-~ type->PORT

< port2_name->label

5% entity1:ConnectionOfIndividualTemplate
% type->ConnectionOfIndividualTemplate

- port2->hasSide2

O portl->hasSidel

5% entity2:FeatureWholePartTemplate
O side1l->hasWhole

~% type->FeatureWholePartTemplate
O port1l->hasPart

5% entity3:FeatureWholePartTemplate
O side2->hasWhole

~% type->FeatureWholePartTemplate
O port2->hasPart

+[2 portl

E

E

[

recorded connection. PCA ClassOfFunctionalObjectis PORT is used as type of port objects.

B

= port1:PORT

Role

Fo ortl_name->label
 mitype
pca.PORT

Lele

Value

-PLIZF-FS151

Three templates are included in the pattern, two are describing ports as features of the
corresponding project objects, and one is describing connection between ports.

The pattern again contains the separate part for each previously described element with
metadata properties assigned to facilitate a repeated import.

11. Importing Connectivity x
Select sheet |Connectionsffor71mport.><Is-Query -
Check that Select pattern [Connection_via_Ports.iiptpl N

Connections_for_Import.xls file is
open on your computer and
ExampleData panel is an active
panel in the Editor. Call pattern
import extension (Build patterns from
MS Excel in Extensions menu).

Roles Columns

creation... |Date

creator |Creator

| portl Port 1 URI
portl_n... |Namel

| port2 Port 2 URI
port2_n... |Name2
sidel Object 1 URI
side2 Object 2 URI

[| R | | I

| «

| «

| «

= N = R L S P

| «

Select sheet Query and load
mapping connections.json from Ready forimport

\Scripts folder. Correspondence ‘lead mapping| Save mapping| Import | Close |
between pattern roles described
above and spreadsheet columns is established. Two check marks at the port roles indicate
that entities in these role should be created with URIs recorded in the corresponding
columns (all other URIs for new entities will be generated by the Editor).

12. Removing duplicates and typing missing objects

Now we will solve in the Editor some problems too difficult to solve during data
preprocessing in Excel.

a. Port type assignment

Objects with the type PORT should receive classifications with PCA RDL classes INPUT
and OUTPUT dependant on the letter used in their names.

b. Stream import completion

Stream and connector objects (which are now occupying roles in the connectivity templates)
should be properly declared with label and local ID properties, and classified with project
RDL entities based on their IDs (Process Stream or PFB connectors).

c. Duplication removal

We have to remove duplicate instances of the ConnectionOfindividualTemplate, where ports
A and B occupy hasSidel and hasSide2 roles once in the direct order and once in the
opposite order. Notice that no duplicates were created for ports themselves or for
FeatureWholePartTemplate, although each was also processed twice during the import —
adapter will never duplicate fully identical objects.

To solve these problems find project_scripts.py file in the \Scripts folder and run its
content in the Editor's console. The execution of the script can take some time, the message
Done will be printed in the console window upon completion.

An import is finished. Now we have representation of the exported diagram data in the ISO
15926 RDF file.

10

13. Exporting and comparing diagram

It is not an easy task to check import correctness by
navigation through an RDF file, although pattern view
(simplified entity view) in the Editor to some degree
allows verification of data.

We have implemented a basic graphical viewer for ISO
15926 data and will use it to compare our results with the
source diagram.

The viewer is just a Python script which generates

= b ExampleData_imported.rdf
= [VES007 : Vessel, vertical
O is connected to PS019SEG1 : Process Stream
O is connected to PS042SEG1 : Process Stream
[is connected to PS050 : Process Stream
O is connected to PS172 : Process Stream
O is connected to VALO18 : Armature
O is connected to PS016SEG1 : Process Stream
O is connected to VALOOZ2 : Armature
O is connected to PS016SEG1 : Process Stream
[is connected to VALOOZ2 : Armature
O is connected to PSO16SEG1 : Process Stream
- is connected to PS038 : Process Stream
= [is connected to PUMOO1 : Pump
-] is connected to PS015 : Process Stream
O is connected to PUMOO1 : Pump
= [is connected to VALO14 : Armature
=[O is connected to PS009 : Process Stream)|
O is connected to VALO14 : Armature
O is connected to VES004 : Tank
O is connected to PS015 : Process Stream|
O is connected to PS038 : Process Stream

an .xgml graph file. This file can be opened,
automatically arranged and explored in the free yEd
graph editor (downloadable from
http://www.yworks.com/en/products_yed about.html).

[is connected to VALOO2 : Armature
O is connected to VALO18 : Armature
[is connected to PS038 : Process Stream
O is connected to VALO18 : Armature
O is connected to PS172 : Process Stream
[is connected to VES007 : Vessel, vertical
O is connected to PS213 : Process Stream

Install yEd on your computer, then find viewer.py file in the \Scripts folder and run its
content in the Editor's console. The execution will take some time, the message Done will be
printed in the console window upon completion.

Locate pid_view.xgml file in the folder with Editor executable and open it in yEd. Use
automatic layout via Layout menu (good results are obtained with Tree layout, just check the
box Allow General Graphs in layout options). You can also find arranged pid_view.xgml
and exported pid_view.png files in the \Imported folder.

The viewer uses shapes predefined in the standard yEd libraries to render equipment of
different types, and resulting picture is not very similar to the standard PFD or P&ID.

Sand Fiter
i

C -
VES007

A —
i

74 \\ B
PSOSb PS172
“Psoe7 AN
Gy

T <
| PS016SECY e

Nevertheless visual comparison is possible and its results are quite satisfactory.
It appears that the diagram falls into several disconnected components because exported

connectivity data aren’t complete and doesn’t contain connections for some items around
the Cartridge Filter module.

11

http://www.yworks.com/en/products_yed_about.html

14. Viewing Linked Data pages for the project

Let’s explore another way to look at ISO 15926 RDF data sets. There is a growing interest in
the engineering community in the Semantic Web approaches to data representation,
publishing and management. Linked Data is one such approach.

Open-source Linked Data extension is developed for the .15926 Editor using open source
Python web toollkits - Flask (http://flask.pocoo.org/) and Tornado
(http://www.tornadoweb.org/).

Linked Data extension turns your Editor into a web server capable to deliver HTML pages
based on the RDF data sets. In the basic configuration the server works locally on your
computer. It can service interconnected human-readable pages for represented concepts
processing diverse URIs and turning them into local page URLs. Advanced configuration
possibilities allow use of the extension on the Internet with differentiated processing for
server owner’s own URIs and URIs of external data.

Unlike the most other Linked Data server applications, in our Linked Data extension content
of the pages is defined by patterns and is open for customisation. It is possible to model
some relationship or concept as a complex RDF graph (pattern), and describe its preferred
human-readable appearance on a web page by HTML template. The Editor will search for
the pattern in RDF data and put its information on the page in a comprehensible form.

The search in the extension is also pattern-oriented and has semantic capabilities.

Searching for the string it locates this string in all identifiers and in all classifiers of data
entities. For example, searching for “pump” will return all entities with “pump” in identifier and
all entities classified with entities with “pump” in identifier.

Identifiers and classifiers are in turn defined by corresponding patterns. For example, objects
of both rdfs:label and http://data.example.org/properties/hasLocalld can be defined as
identifiers.

Classifiers are searched recursively across the data sources. An entity with rdf:type X will
get X as direct classifier and all superclasses of X as inferred classifiers.

To see Linked Data extension working you can open the project ProcessLinkedData.15926
from /Imported folder. This project contains the same data we’ve just imported from
spreadsheets. Go to Extensions menu and select Start/stop linked data demo command.
Point your browser to http://localhost:5000/

Linked Data for Engineering Project

Search Project Data: Submit Query
Search Local Reference Data: Submit Query
Search All Reference Data: Submit Query

| . Powered by .15926 Platform TechInvestLab.ru

Three search fields on the screen allow you to search in the project data, in the local
reference data or in all reference data (local and PCA RDL).

12

http://flask.pocoo.org/
http://www.tornadoweb.org/
http://localhost:5000/

Search for “valve” in Project Data field. Although there are no entities with “valve” substring
in the label, there are many entities classified with Armature class, which is in turn subclass
of the VALVE class in PCA RDL. Semantic search of the extension will return all project
entities for which VALVE is a direct or inferred classifier.

If you search for “artefact” in Project Data field — you will get all equipment items (valves,
pumps, vessels, etc.). PCA ARTEFACT is an inferred superclass for all equipment types.

And if you search for “thing” in Project Data — all entities in the project will be returned, as
PCA ISO 15926-4 THING is inferred classifier for all project entities.

Navigate to a particular equipment item page, for example to
http://localhost:5000/entity?uri=http://data.example.org/project/id=PR001-PU023-VALO71.
You can see information on entity Identifiers, Definitions and Descriptions, Direct classifiers,
Inferred classifiers. 1IP template pattern allows identifying parts of an entity (ports of a valve
in this case). And connection via ports described in the patterns allows us to see connected
process streams.

From this page you can navigate the project by links to connected entities, or look at various
classifiers to get more understanding of their nature.

Using Search All Reference Data field you can search both local reference data library and
all PCA RDL. Or you can go directly to the
http://localhost:5000/entity?uri=http://posccaesar.org/rdI/RDS327239 and compare its rich
information content with the PCA LD page for the PUMP -
http://posccaesar.org/rdI/RDS327239 .

Linked Data extension allows you to explore any project in which there are data sources with
module names pca, projrdl and projdata. You can have only one or two of these data
sources in your project. For example, open PCA RDL in a new project, assign it pca module
name in project properties and start Linked Data extension. Only one search field will be
present on http://localhost:5000/.

13

http://localhost:5000/entity?uri=http://data.example.org/project/id=PR001-PU023-VAL071
http://localhost:5000/entity?uri=http://posccaesar.org/rdl/RDS327239
http://posccaesar.org/rdl/RDS327239
http://localhost:5000/

